
Advances in Public Health 

 

1                                                                      www.academicreads.com 

Book Chapter 

 

A Realistic View of Essential Oils as 

Antibacterial Agents for Ready-to-Eat 

Fruits and Vegetables 
 

Maria Isabel S Santos1, 2*, Cátia Marques1,3, Joana Mota1,2, 

Madalena Grácio2, Isabel Sousa2, Laurentina Pedroso1,2 and Ana 

Lima1,2* 

 
1Faculty of Veterinary Medicine, Lusófona University, 1749-024 

Lisbon, Portugal 
2Linking Landscape, Environment, Agriculture and Food 

(LEAF), Instituto Superior de Agronomia, University of Lisbon, 

Portugal 
3Centre for Interdisciplinary Research in Animal Health (CIISA), 

Faculty of Veterinary Medicine, University of Lisbon, Portugal 

 

*Corresponding Authors: Maria Isabel S Santos, Faculty of 

Veterinary Medicine, Lusófona University, 1749-024 Lisbon, 

Portugal 

 

Ana Lima, Faculty of Veterinary Medicine, Lusófona University, 

1749-024 Lisbon, Portugal 

 

Published January 16, 2023 

 

How to cite this book chapter: Maria Isabel S Santos, Cátia 

Marques, Joana Mota, Madalena Grácio, Isabel Sousa, 

Laurentina Pedroso, Ana Lima. A Realistic View of Essential 

Oils as Antibacterial Agents for Ready-to-Eat Fruits and 

Vegetables. In: Rozhan Khezri, editor. Advances in Public 

Health. Wyoming, USA: Academic Reads. 2023. 

 

© The Author(s) 2023. This article is distributed under the terms 

of the Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/), which permits 

unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 



Advances in Public Health 

 

2                                                                      www.academicreads.com 

Abstract 
 

Despite the modern enhancements in hygiene and food 

production procedures, microbial foodborne diseases continue to 

be a major health concern. In this regard, one major risk factor is 

consumer preferences for “ready-to-eat” or minimally processed 

(MP) fruits and vegetables. Essential oils (EOs) are a viable 

alternative used to reduce pathogenic bacteria and increase the 

shelf-life of MP foods, due to the health risks associated with 

food chlorine. Indeed, there has been increased interest in using 

EO in fresh produce because they are considered human-safe, 

environmentally friendly, and can reduce or eliminate foodborne 

pathogens. However, more information about EO applications in 

MP foods is necessary. For instance, although in vitro tests have 

defined EO as a valuable antimicrobial agent, its practical use in 

MP foods can be hampered by unrealistic concentrations, as 

most studies focus on growth reductions instead of bactericidal 

activity, which, in the case of MP foods, is of utmost importance. 

Furthermore, the concentrations needed for bacteria elimination 

are usually high and can mark the flavor of the food as too strong 

to be pleasant. The present review focuses on the effects of EO 

in MP food pathogens, including the more realistic applications. 

Overall, due to this type of information, EO could be better 

regarded as an “added value” to the food industry and could be 

one of the major trends in the future of food safety and the food 

industry. 
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1. Introduction 
1.1. Minimally Processed Fruits and Vegetables 
 

Duo to the fast pace of modern life there is a scarcity of time, 

particularly regarding meal preparations. Nowadays, consumers’ 

demand for fast and easy to prepare foods and healthy solutions 

is increasing [1–4]. In order to meet consumer demands, food 
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industries are continuously developing a wide range of ready-to-

eat, fresh-cut, refrigerated foods with prolonged shelf lives [1]. 

The product’s freshness is maintained by applying different 

preservation techniques, such as: refrigeration, moderate heating, 

specific packaging and antimicrobial disinfectants. Ready-to-eat 

fresh foods, with minimal alterations and without the addition of 

strong preservatives are referred to as minimally processed (MP) 

foods [1,2,4]. Since the biggest advantage of these new MP 

foods is their easiness and convenience they are sold and 

packaged in a ready-to-eat state and they comprise a wide range 

of products, such as fresh-cut fruits and vegetables, meat, and 

fish [4,5]. MP foods have emerged in response to a new market 

tendency, seeking the natural i.e., a concomitant increasing 

demand for efficient preservation techniques that lack the need 

for chemical preservatives [3]. MP vegetables/fruits are a 

particular branch in the MP food industry and have gained much 

interest from consumers because they are considered an healthier 

choice than processed food products. Minimally processed fruits 

and vegetables (MPFVs) include any fresh vegetable or fruit that 

has been minimally altered (usually cut, peeled, shredded, and 

washed) and packaged, in a ready-to-use state, whilst remaining 

fresh [4,6–9] (Figure 1). 

 

 
 
Figure 1: Examples of minimally processed fruits and vegetables. 
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MP fruits and vegetables simplify everyday life, allowing the 

preparation of healthy, pleasant, and diversified meals, in a time-

saving manner, with reduced food waste. In 2016, 68.68 million 

tons of MPFV were sold globally, which corresponded to a 

revenue of about USD 45 billion. In US these values were of 

21.27 million tons and about USD 14 billion [10].  

 

Nonetheless, MP foods are not sterile. Since vegetables are often 

sold raw and are from agricultural origin, MPFVs contain 

microorganisms (often pathogenic) [11–15]. Consequently, it is 

not startling that some of the most nutritionally recommended 

foods are those with the greatest food preservation and safety 

challenges. Indeed, fruits and vegetables are often implicated in 

foodborne diseases worldwide. Foodborne outbreaks associated 

with raw fruit and vegetable consumption have increased in 

recent years, a problem that concerned researchers and health 

authorities (in food safety areas) and led to the analyses of the 

microbial contamination of fresh produce [16–20]. The potential 

risks of microbiological proliferation are a growing concern, due 

to the high levels of manipulation that these types of products are 

subject to and the increase in MPFV consumption worldwide. 

Vegetables may become contaminated in the pre-harvest stage 

(e.g., as a plant in the field or during harvesting) and in the post-

harvest phase (e.g., during transportation, processing, and 

packaging) [14,21–23]. Therefore, the microbial quality and 

safety of MPFVs is a serious concern. 

 

In recent years, essential oils have been studied due to their 

antimicrobial activities and their potential to be applied in the 

food industry. The use of EOs—specifically in MPFVs—has 

been garnering more attention of late, but there is a lack of 

consolidated appraisals on this issue. The majority of the studies 

performed focus on in vitro testing and few show applications in 

realistic scenarios. Therefore, the main subject of this chapter is 

the effect of EOs in MP food pathogens, in more realistic 

applications, particularly on promising innovative solutions for 

their safe usage. Overall, due to this type of information, EOs 

use in MPFVs can become an “added value” to the food 

industry. 

 



Advances in Public Health 

 

5                                                                      www.academicreads.com 

1.2. Foodborne Diseases: Major Pathogens in Minimally 

Processed Foods 
 

In the last three decades, the epidemiology of foodborne 

infectious diseases has undergone a radical change; vegetal 

products have “arisen” as new vehicles of microorganisms [12]. 

The number of outbreaks is vast, as described in the scientific 

literature, reporting cases that, unfortunately, have resulted in the 

death of hundreds of people [20–24]. Salmonella spp., 

Escherichia coli O157:H7, and Listeria monocytogenes are the 

pathogenic microorganisms that cause the most concerns in 

outbreaks of this nature [14,18,25]. Several of these outbreaks 

have led to widespread public health concerns. For instance, 

between May and July 2011, a major outbreak occurred as a 

result of the high number of cases and the difficulties in 

detecting the source of the infection. The outbreak occurred in 

Germany; out of a total of 3816 cases, 845 patients developed 

hemolytic uremic syndrome (HUS) and 54 died. Most of the 

patients (88%) who developed HUS were adults, contrary to 

what usually occurs in VTEC strain infections. Likewise, the 

female gender (aged between 30 and 34 years) was the most 

affected (68% of cases with HUS and 58% of gastroenteritis). 

The epidemic strain of this outbreak was an E. coli O104:H4 

enteroaggregative that acquired the Shiga toxin 2 (Stx2a) 

converting bacteriophage. This outbreak was disseminated 

worldwide, with reports in 15 European countries and in the 

USA. In France, eight cases occurred in people who had been 

present at a community event, and the isolated strain had a 

genetic profile compatible with the epidemic strain from 

Germany. Given that it was a common event, it was possible to 

identify the suspected food as fenugreek sprouts imported from 

Egypt in 2009 [26–29]. According to data from the USA, fruits 

and vegetables account for an estimated 46% of foodborne 

illnesses, most of which are caused by norovirus, Salmonella 

spp., and E. coli O157:H7, with leafy vegetables being the most 

frequent vehicle. Vegetables are responsible for 2.2 million 

foodborne illness cases per year (22%), corresponding to the 

food product responsible for the largest number of patients. It is 

estimated that 24,000 people (41%) are hospitalized annually 

due to the consumption of products of plant origin, of which, 



Advances in Public Health 

 

6                                                                      www.academicreads.com 

38% are attributed to fruits and vegetables and 16% to leafy 

vegetables, just behind dairy products, which occupy first place 

(in terms of hospitalizations). Regarding the number of deaths—

fruit and vegetable consumption is related to 333 foodborne 

illnesses per year (23%), far below the 43% from animal product 

consumption (terrestrial). In summary, leafy vegetables account 

for the largest number of patients with foodborne diseases 

(22%), being the second cause of hospitalization (14%) and the 

fifth most frequent cause of death (6%) [19]. 

 

1.3. Minimally Processed Foods: Decontamination 

Methodologies and Related Problems 
 

The more common decontamination methodologies used are 

washing and disinfecting plant products. However, these 

decontamination methodologies are not 100% effective and 

when the pathogenic microorganisms are internally located is not 

effective at all. Microorganisms can penetrate plant tissues, both 

in the pre-harvest phase by internalization (Figure 2), or in the 

post-harvest phase by infiltration, which makes its elimination 

much more complex. Once bound, microorganisms can be 

incorporated into biofilms, which increases their ability to 

survive in plant tissues [30]. In short, the plant life cycle has 

different stages (seed, germination, mature plant, flower, fruit) 

and the pathogenic microorganism internalization can occur at 

any of the mentioned stages, having the ability to move on to the 

next phase [31,32]. Thus, even when disinfected, these 

microorganisms can be out of reach in irregular surfaces or in 

biofilms. Similarly, injuries caused by harvesting and transport 

can provide protective places where microorganisms can survive 

and grow, unharmed [6]. 
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Figure 2: Schematic explanation of the entry and permanence of pathogenic 

microorganisms in the plant life cycle (Adapted from [16]). 

 

Currently, the most commonly used disinfection methods are 

chlorine-based [32,33], with chlorinated water being the usual 

selection used to disinfect MPFV due to its low cost and 

simplicity of use [32,33]. To evaluate the efficacy of the 

decontamination, two factors have to be considered: the 

reduction of microorganisms obtained and, more importantly, the 

ability to maintain this reduction over the product’s shelf-life. 

Although it has a low cost, chlorine does not have a good 

efficacy because its disinfecting power is short-lived and the 

surviving bacterial populations can actually multiply faster than 

the corresponding populations in non-disinfected products 

[33,34]. Furthermore, chlorine can be harmful due to the 

formation of toxic derivatives, such as trihalomethane and 

chloramine. Hence, there are health concerns associated with its 

use, which has led to restrictions on its use in several European 

countries, namely the Netherlands, Sweden, Germany, Swiss, 

Denmark, and Belgium [22,24,33,35–38]. 

 

Other methodologies can include the use of chlorine dioxide 

[4,39], organic acids [4,11,40–43], hydrogen peroxide [4,44–46], 

electrolyzed water [4,47], ozonated water [4,48–52], or calcium-

based solutions [4,53]. Although, these methods are easy to 

apply and have strong bactericidal effects most of them present a 

few disadvantages in their use. For example, the use of chlorine 

dioxide has been shown to be effective in reducing bacterial 
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populations, but it ultimately affects some organoleptic 

characteristics. The drastic reduction of the native microbial 

population is another factor to consider, i.e., decreasing 

competition for space and nutrients may lead to a subsequent 

increase in the development of pathogenic microorganisms 

[24,35]. Other physical treatments that have been developed in 

recent years include ionizing radiation [4,9,18], ultraviolet 

[4,54], and infrared or modified atmosphere [4,35]. These 

methods may be bacteriostatic or bactericidal, and they have 

shown high efficiency in the inhibition of microbial 

contaminations [35]. However, they present technological 

problems that limit their usefulness. For example, the irradiation 

process cannot be used in isolation as a step in continuous 

washing [55]. 

 

1.4. Minimally Processed Fruits and Vegetables 

Decontamination: Natural Alternatives  
 

Natural antibacterial compounds as an alternative to chemical 

disinfectants are considered an excellent option in the eyes of 

consumers, not only in the context of food safety but also as an 

alternative to chemical antibacterial agents (overall) [18,56–60]. 

Several studies have been developed in this area. Typically, the 

main goal of these studies is to eradicate pathogens and the 

microorganisms responsible for vegetable spoilage [55,61]. 

There are different sources of these natural antibacterial 

compounds such as plants (e.g., essential oils), microorganisms 

(e.g., lactic acid bacteria through the production of lactic acid 

and antimicrobial polypeptides), and animals (e.g., lysozyme) 

[60,62]. The natural products mentioned above and their 

components are considered safe to consume (generally 

recognized as safe—GRAS), so concerns surrounding their 

safety of use in MP foods are minimal. There have been many 

studies developed in this area, e.g., the search for new and 

natural bioactive compounds that can be used for food 

disinfection. Some examples are acetic acid, ascorbic acid, lactic 

acid, essential oils, and cheese whey, among others [60,62]. 

However, only a few natural disinfectants proposed in scientific 

studies have actually reached the market. Undeniably, there is a 
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need for more practical, realistic studies and approaches to 

surpass this challenge. 

 

2. Essential Oils: An Alternative as Food 

Disinfectants 
 

Since ancient times, the antimicrobial properties of plants and 

spices have been exploited as food preservatives [63–67]; 

scientific interest in this area has recently reemerged [68]. In 

recent decades, essential oils (EOs) from aromatic and medicinal 

plants have been used as novel alternatives to common food 

antibacterial agents, as they are natural products, inherently well 

tolerated, and present fewer side effects when compared to other 

food preservatives or disinfectants.  

 

EOs are the result of plant secondary metabolites, they are 

known to present intense odors, being extremely volatile and 

hydrophobic [69]. They are produced by specialized excretory 

structures and can be found in several parts of these plants, 

namely leaves, fruits, flowers, buds, seeds, branches, and roots, 

and their compositions may vary according to the location [70]. 

 

In nature, these metabolites have two distinct functions: 1) they 

protect plants against pests or infections through their 

insecticidal, antibacterial, and antifungal actions; 2) they attract 

certain insects, so that they remove pollen from the plant, 

facilitating pollination [71]. The amount and composition may 

vary, both genetically and physiologically, as well as due to 

external factors, such as growing conditions, harvesting, post-

harvest conditions, and environmental factors, among others 

[69,72]. 

 

2.1. Essential Oils: Composition  
 

EOs are volatile, natural, complex compounds formed by 

aromatic plants as secondary metabolites and are characterized 

as having strong odors [71]. In nature, EOs play an important 

role in the protection of plants through their antibacterial, 

antiviral, antifungal, and insecticides actions, as well as against 

herbivores by reducing their appetite for such plants. EOs may 
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attract some insects, to favor the dispersion of pollen and seeds, 

or repel others that are undesirable [71]. EO chemical 

compositions can widely differ, according to several factors, 

such as the soil composition, the organ of the plant from which it 

is extracted, the time of the year it is harvested, the plant and 

organ age [71,73], and the extraction method used [63]. The 

different EOs compositions result in different responses in their 

antimicrobial activities, even when they are tested under the 

same conditions. Thus, obtaining/extracting in a standardized 

manner is important in order to obtain a comparable composition 

of EOs [63,71]. 

 

EOs are complex natural mixtures that could contain 

approximately 20–60 components at quite different 

concentrations. They are characterized by two or three major 

components at fairly high concentrations (20–70%) in 

combination with other components that are only present in trace 

amounts [63,71,74]. Generally, it is the component in the 

greatest concentration (major constituent) that confers the 

biological activity to the EO; however, this activity is often the 

result of the synergy between several components [63,74,75]. In 

a study carried out in the control of Botrytis cinerea using 

several EOs, the authors verified that, in most cases, those with 

the highest concentrations of the major constituents had higher 

fungicidal activities [76]. 

 

Table 1 shows the major components of some of the most known 

EOs used in foods. These active compounds have different 

chemical groups, composed of alcohols, esters, aldehydes, 

ketones, phenols, and phenolic ethers, with terpene compounds 

being the most abundant [77]. The components include two 

groups of distinct biosynthetic origins [63,71]. The main group is 

composed of terpenes and terpenoids and the other of aromatic 

and aliphatic constituents, all characterized by low molecular 

weight [71]. Terpenes form structurally and functionally 

different classes. They are made from combinations of several 5-

carbon-base (C5) units called isoprene and they have been 

extensively reviewed [74]. The main terpenes in EOs are 

monoterpenes (C10) and sesquiterpenes (C15), but 

monoterpenes are the most representative molecules, constituting 
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90% of essential oils and allowing for a large variety of 

structures [71], although they usually do not represent a group of 

constituents with high inherent antimicrobial activity [74]. 

Hemiterpenes (C5), diterpenes (C20), triterpenes (C30), and 

tetraterpenes (C40) also exist [74]. Examples of plants 

containing these compounds are angelica, bergamot, caraway, 

celery, citronella, coriander, eucalyptus, geranium, juniper, 

lavender, lemon, lemongrass, mandarin, mint, orange, 

peppermint, petitgrain, pine, rosemary, sage, and thyme [71]. 

 

Terpenoids are terpenes that undergo biochemical modifications 

via enzymes that add oxygen molecules and move (or remove) 

methyl groups [71,74,77]. Terpenoids can be subdivided into 

alcohols, esters, aldehydes, ketones, ethers, phenols, and 

epoxides. Examples of terpenoids in EOs with food applications 

are: thymol, carvacrol, linalool, citronellal, piperitone, menthol, 

and eugenol (Table 1). The antimicrobial activities of most 

terpenoids are linked to their functional groups; the hydroxyl 

group of phenolic terpenoids is recognized as the most important 

for antimicrobial activity [74]. 

 

Besides terpenes and terpenoids, aromatic compounds occur less 

frequently but are also noteworthy. They are derived from 

phenylpropane and include cinnamaldehyde, chavicol, eugenol, 

myristicin, and safrole, among others [74,77]. The main plant 

families for these compounds are Apiaceae, Lamiaceae, 

Myrtaceae, and Rutaceae, which include plant species, such as 

anise, cinnamon, clove, fennel, nutmeg, parsley, sassafras, star 

anise, and tarragon, among others [74]. Sulfur-based components 

from plants, such as garlic and mustard oils (e.g., glucosinolates 

or isothiocyanate derivatives) are also secondary metabolites 

often found in diverse source plants for EO [74]. 

 

2.2 Components of Essential Oils: Secondary Effects  
 

Because of the great number of constituents, essential oils can 

induce secondary effects on consumers, depending on their 

concentrations. The use of EO in foods—besides odor and 

taste—can induce some secondary effects in consumers, 

although there are restrictions on the doses used for food 
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applications and, most of all, for food safety issues (please see 

Section 3). The biological effects of EOs have been extensively 

reviewed elsewhere [71], mostly focusing on cytotoxicity, 

nuclear mutagenicity, and carcinogenicity. Cytotoxicity occurs 

mostly due to membrane damage [78–84], cytoplasm 

coagulation [85], and overall damage to lipids and proteins [85–

89]. Essential oil cytotoxicity in mammalian cells is caused by 

the induction of apoptosis and necrosis [71]. For example, 

eugenol, isoeugenol, methyl eugenol, and safrole induce 

cytotoxicity and genotoxicity in rat and mouse hepatocytes [90], 

and estragole also induces cytotoxicity in hamster fibroblastic 

V79 cells [91]. Many studies using EO or their main components 

have also shown that, grosso modo, most of them do not induce 

nuclear mutations [71]; however, there are a few exceptions, 

particularly in the case of some EOs constituents that can act as 

secondary carcinogens after metabolic activation [92]. Specific 

EOs constituents that have been shown to induce carcinogenic 

metabolites in rodents include safrole (from Sassafras albidum 

EO) [90,93,94], methyl eugenol (from Laurus nobilis and 

Melaleuca Leucadendron EO) [90], d-Limonene (from Citrus 

EO), and estragole (from Ocimum basilicum and Artemisia 

dracunculus EO) [93,95]. Moreover, the EO from Salvia sclarea 

and Melaleuca quinquenervia can induce estrogen secretion, 

which in turn can trigger estrogen-dependent cancers. Moreover, 

the EO components containing photosensitizing molecules can 

also cause skin erythema or cancer [96,97]. 
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Table 1:  Major components of some essential oils with food application. 

 

Common Name Scientific name Major Constituent 2nd Constituent 3rd Constituent 4th Constituent 5th Constituent Source 

Amaryllidaceae        

Garlic Allium sativum Diallyl disulfide Allyl methyl 

trisulfide 

Diallyl trisulfide Diallyl sulfide Allyl methyl 

disulfide 

[98] 

Onion Allium cepa Dipropyl disulfide Dipropyl 

trisulfide 

Propenyl propyl 

disulfide 

Methyl propyl 

trisulfide 

Allyl propyl 

trisulfide 

[99] 

Asteracae        

Chamomile Matricaria 

chamomilla 

Bisabolol oxide Camphene Sabinene Limonene Cineole [100] 

Cupressaceae        

Juniper Juniperus 

communis 

Pinene Myrcene Sabinene Limonene Caryophyllene [101] 

Lauraceae        

Cinnamon Cinnamomum 

zeilanicum 

Eugenol -Himachalene Biciclogermacreno Linalool Nerolidol [76] 

Lamiaceae        

Basil Ocimum 

basilicum 

Linalool Geraniol Eugenol Eucalyptol Humulene [102] 

English 

Lavender 

Lavandula 

angustifolia 

Linallol Linalyl acetate Geraniol Caryophyllene Lavandulyl 

acetate 

[103] 

Lavender Lavandula 

hybrida 

Octyl Acetate Linalool Isobornyl acetate Camphor −Himachalene [76] 

Lemon Balm Melissa 

officinalis 

Neral Nerol Geranial Geraniol Caryophyllene [104] 

Marjoram Origanum 

majorana 

Terpinenol Sabinene Cymene Terpinene Limonene [105] 

Oregano Origanum 

vulgare 

Thymol Terpinene Cymene Carvacrol Myrcene [105] 

Peppermint Mentha piperita Menthol Menthone Menthyl acetate -Himachalene Eucaliptol [76] 

Rosemary Rosmarinus 

officinalis 

Eucalyptol Camphor Pinene Camphene −Terpineol [76] 

Sage Salvia officinalis Camphor Thujone Cineole Camphene Borneol [106] 

Thyme Thymus vulgaris −Terpinene Cymene Thymol Linalool Carvacrol [107] 

Myrtaceae        

Eucalyptus Corymbia 

citriodora 

Citronelal 7-Octen-1-ol Isopulegol Fenchyl acetate Eucalyptol [76] 

Tea Tree Malaleuca 

alternifólia 

Terpinenol -Terpinene Eucalyptol -Terpinene Cymene [76] 

Clove Tree Syzigium 

aromaticum 

Eugenol  -Humulene -Cadinene Caryophyllene 

oxide 

Eugenyl acetate [76] 

Piperaceae        

Black Pepper Piper nigrum −Pinene −Phellandrene Terpinene Cubebene Farnesene [76] 

Poaceae        

Lemon grass Cymbopogon 

citratus 

Geranial Neral Myrcene Geraniol Verbenol [76] 
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Citronella Cymbopogon 

nardus 

Citronelal Geraniol Octenol Elemol Citronellyl 

isobutyrate 

[76] 

Palmarosa Cymbopogon 

martini 

Geraniol Geranyl Acetate Linalool -Ocimene -Himachalene [76] 

Rutaceae        

Bergamot Citrus bergamia Linallol Limonene Linalyl acetate Terpinene Pinene [108] 

Citron Citrus medica 

var. 

sarcodactylis 

Limonene -Terpinene Terpineol Bisabolene Cymene [109] 

Grapefruit Citrus paradisi Limonene Myrcene Pinene Sabinene Carvone [110] 

Lemon Citrus lemon Limonene Pinene Linalool Terpineol Linalyl acetate [111] 

Orange Citrus sinensis 

var. dulcis 

Limonene Myrcene Pinene Caprialdehyde Sabinene [76] 

Tangerine Citrus nobilis 

var.tangerine 

Limonene Linalool Pinene Myrcene Terpineol [112] 

Zingiberaceae        

Cardamom Elettaria 

cardamomum 

Terpinyl acetate Cineole Sabinene Terpineol Limonene [113] 

Ginger Zingiber 

officinale 

Zingiberene Citronellyl Phellandrene Camphene −Pinene [114] 
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2.3. Essential Oils: Antibacterial Activities in Food 

Safety 
 

Although the antimicrobial activities of EOs are well recognized 

and substantiated by many studies, their underlying antimicrobial 

mechanisms are still poorly understood [74]. It has been well 

recognized that Gram-positive bacteria are the most susceptible 

to EO, as opposed to Gram-negative bacteria [63,65,74,114–

118], possibly due to their different cell wall constituents, which 

might hinder diffusion [63]. According to some authors [74], the 

antibacterial mechanisms of EOs hold several targets, making it 

rather difficult to predict the susceptibility of a microorganism to 

a particular EO. Nonetheless, overall antimicrobial activity is 

mostly attributed to the EO’s hydrophobic nature, which allows 

it to effectively move across the lipid layer of the cell 

membranes, eventually leading to alterations in permeability and 

eventually disruption, culminating in the release of ions and 

intracellular components [119], resulting in cellular death. The 

overall antibacterial mechanisms encompassed by EO have been 

extensively reviewed elsewhere [120]. Overall, the main EOs 

constituents (Figure 3, Table 1) are those playing the key roles in 

antibacterial activities, namely terpenes and other compounds, 

including ketones (e.g., β-myrcene, α-thujone, or geranyl 

acetate) and phenols (e.g., cinnamaldehyde, carvacrol, eugenol, 

or thymol) [121]. Carvacrol, eugenol, and thymol have been 

recognized as some of the major antibacterial compounds in EOs 

[121], although many others are being reported on. 
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Figure 3: Factors affecting the practicality of essential oil antibacterial activity 

of minimally processed foods in the food industry. 

 

The detection of antibacterial activity in EOs is of extreme 

importance in the food industry, to tackle the growing concerns 

about pathogenic and/or resistant bacteria dissemination 

worldwide, including via food chain transfers. Concerning the 

concentration range—there are several terms used in the 

literature to define the antimicrobial activities of EO, which are 

summarized in Table 2. The different definitions differ among 

the studies, often making it difficult to compare the results 

reported in various works. In the context of food safety, 

however, it is important to evaluate the minimum bactericidal 

concentration (MBC) as well as the (usually much lower) 

minimum inhibitory concentration (MIC) values, since the 

elimination of the inoculum is desirable and not only a reduction 

of its growth. 
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Table 2: Terms used to define the antimicrobial activities of essential oils. 

 
Terms Definitions References 

Minimal inhibitory  

concentration 

Lowest concentration resulting in 

maintenance or reduction of inoculum 

viability of the tested organism. 

[122] 

Lowest concentration inducing a 

significant decrease in inoculum 

viability (>90%). 

[123] 

Lowest concentration inducing a 

complete inhibition of the tested 

organism, up to 48 h of incubation. 

[124] 

Lowest concentration inducing visible 

growth reduction of the tested 

organism. 

[77] 

Lowest concentration reducing visible 

growth of the tested organism 

[125] 

Lowest concentration inhibiting visible 

growth of the tested organism over 18 

to 24 h. 

[126] 

Minimal 

bactericidal  

concentration 

Lowest concentration at which no 

growth is observed after subculture. 

[127] 

Concentration inducing death of 99.9% 

or more of the initial inoculum.  

[123] 

Lowest concentration that results in the 

death of 99.9% of the tested organism. 

[125] 

Minimum concentration that induces a 

bactericidal effect, determined by re-

culturing broth dilutions that inhibit 

bacterial growth (i.e., those at or above 

the MIC). 

[126] 

Bacteriostatic  

concentration 

Lowest concentration stopping 

bacterial growth in broth, but cultured 

when broth is plated onto agar. 

[128] 

Bactericidal 

 concentration 

Lowest concentration stopping 

bacterial growth in broth; not cultured 

when broth is plated onto agar. 

[128] 

 

3. Essential Oils: Challenges of the Application 

in MP Foods - Are They a Promise Solution as 

They Appealed to Be? 
 

The applications of EOs in foods—due to their importance as 

possible alternatives as food preservatives—have been 

extensively reviewed [63,68,70,119,121,129-131]. In MP foods, 

in particular, the latter are much more important in food safety 
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and industrial-scale sanitizers, where the complete elimination of 

foodborne pathogens from processed fruits and vegetables is 

required. However, despite the high number of published data 

about EOs antibacterial activity in products such as meat, fruits, 

and vegetables, most studies report on MICs while only a few 

determine the EO MBCs [132]. A previous study by Santos et al. 

[132] tested and compared the MIC and MBCs of several EOs 

(Origanum vulgare, Salvia lavandulifolia, Salvia officinalis, 

Salvia sclarea, and Rosmarinus officinalis) as disinfectants in 

fresh lettuce and compared both MICs and MBCs in all tested 

EOs. The authors concluded that realistic antibacterial activity 

required the use of much higher EO concentrations than what 

was found in MICs, precluding its practical use. Furthermore, 

when testing realistic MBC concentrations, the EOs studied were 

also found to be active against just a small number of bacterial 

species (as opposed to what the in vitro MICs suggested), which 

further limited its usefulness as broadrange disinfectants. 

Furthermore, it should be noted that, above certain 

concentrations, EOs may no longer be viable for food use 

because (1) they become too odoriferous and unpalatable to taste 

[117] and (2) the great majority present toxicities to consumers 

[63,118]. 

 

Several studies have substantiated this notion. Frangos et al. 

[117] reported that the although the use of salt and 0.2% (v/w) 

oregano oil in cooked trout produced a distinct odor it was, 

nonetheless, well received in sensorial analysis, unlike the higher 

concentrations of 0.4% oregano oil (v/w) combined with salt. 

Mejlholm and Dalgaard [133] also concluded that for several 

EOs, the concentrations required for extending shelf-life 

conveyed overly strong flavors, which limited their use.  

 

It becomes therefore important to compare the MIC and MBC 

values in studies using EOs as food antibacterial agents. Table 3 

presents the results of several studies in which EO MBC and 

MIC values were determined. 
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Table 3: Minimal inhibitory concentration (MIC) and minimal bactericidal 

concentration (MBC) values of essential oils against foodborne pathogens in 

the literature. 

 

Essential Oil 
Microbial Strains 

Tested 
MIC MBC References 

Baccharis 

dracunculifolia 

Enterobacter 

cloacae (clinical 

isolate) 

Escherichia coli 

ATCC 35218 

6.3 mg/mL 8.4 mg/mL 

[134] 

Listeria 

monocytogenes 

NCTC 7973 

Salmonella 

Typhimurium 

ATCC 13311 

12.7 mg/mL 16.9 mg/mL 

Micrococcus flavus 

ATCC 10240 
3.15 mg/mL 4.2 mg/mL 

Pseudomonas 

aeruginosa ATCC 

27853 

1.05 mg/mL 2.1 mg/mL 

Cinnamomum 

cassia 

Listeria 

monocytogenes 

NCTC 11994 

0.5 µL/mL 0.5 µL/mL 

[116] 

Listeria 

monocytogenes 

S0580 

Escherichia coli 

O157:H7 S0575 

0.3 µL/mL 0.3 µL/mL 

Salmonella 

Typhimurium 

ATCC 14028 

Salmonella 

Typhimurium 

S0584 

0.25 µL/mL 1 µL/mL 

Klebsiella 

pneumoniae ATCC 

10031 

2.5 mg/mL 2.5 mg/mL 

[135]  
Pseudomonas 

aeruginosa ATCC 

27853 

5 mg/mL 5 mg/mL 

Cinnamomum 

verum 

Listeria 

monocytogenes 

NCTC 11994 

Salmonella 

Typhimurium 

ATCC 14028 

Escherichia coli 

0.5 µL/mL 0.5 µL/mL [116] 
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O157:H7 ATCC 

35150 

Escherichia coli 

O157:H7 S0575 

Listeria 

monocytogenes 

S0580 

0.5 µL/mL 1 µL/mL 

Eugenia 

caryophyllus 

Listeria 

monocytogenes 

NCTC 11994 

Listeria 

monocytogenes 

S0580 

1 µL/mL >1.5 µL/mL 

Salmonella 

Typhimurium 

ATCC 14028 

Salmonella 

Typhimurium 

S0584 

1 µL/mL 1.5 µL/mL 

Escherichia coli 

O157:H7 S0575 

Escherichia coli 

O157:H7 ATCC 

35150 

1 µL/mL 1 µL/mL 

Lavandula 

angustifolia 

Enterococcus 

faecalis ATCC 

29212 

Staphylococcus 

aureus ATCC 

25923 

32 µL/mL 64 µL/mL 

[136] 

Escherichia coli 

ATCC 25922 
128 µL/mL 512 µL/mL 

Matricaria 

chamomilla 

Staphylococcus 

aureus ATCC 

29213 

Staphylococcus 

aureus ATCC 

43300 

Staphylococcus 

epidermidis ATCC 

12228 

Enterococcus 

faecalis ATCC 

51299 

>4 µL/mL >4 µL/mL [137] 

Melaleuca 

alternifolia 

Lactobacillus spp. 1 µL/mL 2 µL/mL [138] 

Enterococcus 

faecalis ATCC 

29212 

64 µL/mL 64 µL/mL 
[136] 

Escherichia coli 2 µL/mL 2 µL/mL 
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ATCC 25922 

Staphylococcus 

aureus ATCC 

25923 

1 µL/mL 2 µL/mL 

Mentha 

suaveolens 

Salmonella CECT 

915 
0.5 µL/mL 1 µL/mL [139] 

Mentha × 

piperita 

Clostridium 

perfringens 
10 mg/mL 10 mg/mL [140] 

Ocimum 

basilicum 

Staphylococcus 

aureus ATCC 

29213 

Staphylococcus 

epidermidis ATCC 

12228 

0.25 µL/mL 0.25 µL/mL 

[137] 

Enterococcus 

faecalis ATCC 

51299 

4 µL/mL 4 µL/mL 

Pimpinella 

anisum 

Clostridium 

perfringens 
10 mg/mL 20 mg/mL [140] 

Origanum sp. Escherichia coli 

Salmonella Indiana 

Listeria innocua 

Staphylococcus 

aureus 

0.9 mg/mL 1.1 mg/mL [141] 

Origanum 

elongatum 

Escherichia coli 

0157:H7 
0.5 µL/mL 0.5 µL/mL [139] 

Origanum 

majorana 

Clostridium 

perfringens 
5 mg/mL 5 mg/mL [140] 

Origanum 

vulgare 

Salmonella 

Enteritidis 

ATCC 13076 

Escherichia coli 

ATCC 25922 

320 µg/mL 320 µg/mL 

[142] 

Salmonella 

Typhimurium 

ATCC 14028 

160 µg/mL 320 µg/mL 

Staphylococcus 

aureus 

ATCC 25923 

640 µg/mL >2560 µg/mL 

Methicillin 

resistant 

Staphylococcus 

aureus 

ATCC 43300 

320 µg/mL 1280 µg/mL 

Bacillus cereus 

ATCC 11778 
160 µg/mL 1280 µg/mL 

Origanum 

vulgare 

ecotype S 

Proteus mirabilis 

ATCC 25933 

Proteus vulgaris 

100 µg/mL 100 µg/mL  
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ATCC 13315 

Origanum 

vulgare 

ecotype SG 

Streptococcus 

faecalis ATTC 

29212 

100 µg/mL 100 µg/mL  

Rosmarinus 

officinalis 

Salmonella spp. 

(strains: 6554, 

6877, 6907, 7643, 

9487, 9340, 9681, 

9812)# 

12.5 mg/mL 25 mg/mL [143] 

Clostridium 

perfringens 
10 mg/mL 10 mg/mL [140] 

Escherichia coli 4.4 mg/mL 4.4 mg/mL 

[139] Salmonella Indiana 8.8 mg/mL NA 

Listeria innocua 8.8 mg/mL NA 

Satureja 

montana 

Salmonella spp. 

(strains: 6554, 

6877, 6907, 7215, 

7466, 9487, 9681) # 

0.4 mg/mL 39 mg/mL [143] 

Thymus vulgaris Salmonella 

Typhimurium LT2 

DT104 

Salmonella spp. 

(strains: 6877, 

6907, 7466, 7643, 

9487, 9681, 9983) 

1.6 mg/mL 1.6 mg/mL [143] 

Thymus vulgaris 

thymoliferum 

Listeria 

monocytogenes 

S0580 

Escherichia coli 

O157:H7 ATCC 

35150 

0.25 µL/mL 0.25 µL/mL 

[116] 
Salmonella 

Typhimurium 

(ATCC 14028; 

S0584) 

Escherichia coli 

O157:H7 S0575 

0.25 µL/mL 0.5 µL/mL 

Thymus 

daenensis 
Escherichia coli 4 mg/mL 4 mg/mL [144] 

 

NA: no antimicrobial activity; # Salmonella strains isolated from food. 
 

As observed, most studies report very high MBC values (over 10 

μg/mL and often much more) when compared to MIC levels. 

Hence, although the antimicrobial activities of EOs can be well 

established, their practical applications in food products, 

particularly in MP foods, can be limited because their realistic 

applications would most likely produce strong and unpleasant 
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odors, as well as undesirable changes in taste [68,74,145]. There 

is also the further risk of toxicity for human consumption as well 

in such high concentrations. For example, sage EO, which is 

interdicted at high levels because of its high toxicity [118]. 

Additionally, it has been reported that, whilst many EOs may 

show good antimicrobial performances in vitro, they require 

greater concentrations to obtain similar results in food products 

[63]. 
 

Several other factors (apart from the limitations related to high 

concentrations) also challenge the use of EOs as disinfectants in 

MP foods. The factors affecting the practicality of EO 

antibacterial activity in the food industry of MPFV are depicted 

in Figure 3. Both physical and environmental factors can 

significantly interfere with the EO antibacterial activity, such as 

the low temperatures applied to MPFV [145]. Furthermore, the 

variations in EOs compositions due to environmental factors [71] 

and the extraction methods used [63], often lead to a lack of 

reproducibility [73,120]. 
 

Considering that (1) the EOs constituents can often interact with 

food matrix components, such as fat [146-148  ], starch [149], or 

proteins [74,86,150]; (2) their bioactivity depends on factors 

such as pH [135], temperature [132,135], and the level of 

microbial contamination [151]; and (3) EOs--when extrapolating 

in vitro tests to realistic conditions—usually present lower 

performances [72,152], one might ask: although EOs are 

unequivocally good antibacterial agents, are they suitable for the 

MP food industry? Most works suggest that perhaps not, at least, 

not in the more classical context. However, several authors have 

suggested other approaches, such as mixing EOs with other food 

ingredients or other antimicrobial agents, (e.g., antibacterial 

peptides, such as nisin), which could facilitate the use of lower 

EO concentrations [153–155]. Nonetheless, it is important to 

note that many of these constraints are only observed in MPFV 

foods. In fact, EOs that are GRAS have been well applied to 

other food products, such as dairy products, sauces, desserts, and 

beverages [64,156], where hiding the EO odor and taste is not 

much of a challenge [115]. Crude EOs that are GRAS by the 

FDA include (amongst others) nutmeg, basil, oregano, thyme, 

mustard, clove, and cinnamon, amongst others [74]. Moreover, a 
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range of EOs components is used for flavoring agents in the food 

industry, such as thymol, eugenol, vanillin, and limonene, among 

others [115]. Carvacrol (having lower MIC and less toxicity) is 

also commonly used as a preservative and flavoring agent in 

food products, such as drinks and sweets [120]. 
 

4. Essential Oils: Applications in Minimally 

Processed Foods 
 

The application of EOs in real food systems as antibacterial 

agents, despite its many constraints, has emerged at the lab-scale. 

In the last twenty years, several alternatives and rather 

innovative EOs applications have been proposed that provided 

effective solutions to the challenges described in this review. 

Most of these innovative applications allow for the use of 

smaller amounts of EO or avoid its contact with food products, 

per se. Some examples include the use of EO in packaging, 

coating, nanoencapsulation, and even synergistic pairing with 

other EOs or antibacterial agents. Figure 4 summarizes the 

innovative applications of EO currently in use in MPFVs. 
 

 
 

Figure 4: Innovative applications of EOs in MP foods. 
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The first emerging application involves the use of EOs in food 

packaging. Currently, a range of complementary techniques is 

used in MPFV packaging, such as modified atmosphere 

packaging (MAP) and controlled atmosphere (CA). The addition 

of EOs in the food packaging film rather than its addition to the 

food product per se is considered one of the most efficient 

strategies used against many pathogens in MPFVs [73,120]. EOs 

can also be encapsulated and copolymerized into edible or 

biodegradable films or coatings around food products, providing 

their slow release to the food or to the gaseous environment of 

the package [68,74,157–161]. In some cases, the edible film or 

coating combines the EO with other antimicrobial agents as well 

[157,161,162]. Another way to optimize the use of EOs is to 

encapsulate it into nanoemulsions. This will not only increase the 

volatile component’s stability but will also reduce interactions 

with the food matrix [162]. For example, Munekata et al. [146] 

described the use of EO against E. coli in fresh vegetables, often 

comprising washing/rinsing solutions with nanoemulsions. 

 

Another alternative involves the combination of different EOs to 

obtain a synergistic effect [163]. Indeed, the combination of 

EOs, such as oregano, cinnamon, garlic, coriander, rosemary, 

sage, clove, and others, has been studied and well-reviewed [86]. 

Indeed, both synergistic and antagonistic effects have been 

reported on; this has become quite an expanding area of research 

with promising results [63,77,82,163–169]. Nonetheless, little is 

known about the mechanisms that rule these synergetic and 

antagonistic behaviors among EOs components and their safety 

levels for consumers [164]. 

 

Overall, the literature shows that these innovative EOs 

applications are steadily revealing themselves as promising 

natural and effective methods used to avoid pathogenic 

foodborne contamination and growth in MPFVs. Although 

studies on antibacterial activities are scarcer than antifungal 

activities, there has been an undeniable increase in their use and 

testing. Table 4 presents the realistic and effective applications 

of EOs as antibacterial agents in MPFVs. 
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Table 4: Overview of studies testing realistic applications of essential oils or their components as antibacterial agents in minimally processed fruits and vegetables. 

 
Food Group Food Essential Oil 

(or Component) 

Targeted Bacteria Type of Application References 

Fruits Table grapes Eugenol and thymol Natural microbiota MAP [170] 

Table grapes Eugenol, thymol, and carvacrol Natural microbiota MAP [171] 

Sweet cherries Eugenol, thymol, menthol, 

eucalyptol 

Natural microbiota MAP [172] 

Blueberries Thymol Escherichia coli O157:H7, Salmonella 

Typhimurium, Listeria monocytogenes 

Washing solution [173] 

Plums Lemongrass Escherichia coli, Salmonella 

Typhimurium 

Coating [174] 

Avocado Thyme Natural microbiota MAP [175] 

Pomegranate arils Satureja hortensis Natural microbiota Dipping solution with 

encapsulation of EO in 

chitosan nanoparticles 

[176] 

Fresh cut honeydew melon Carvacrol, cinnamic acid Natural microbiota Dipping solution [177] 

Fresh cut kiwi Carvacrol, cinnamic acid Natural microbiota Dipping solution [177] 

Fresh sliced apples Hexanal, hexyl acetate, 

E(2)hexenal 

Salmonella Enteritidis, Escherichia coli, 

Listeria monocytogenes 

Dipping solution [178] 

Fresh sliced apples Oregano, lemongrass, Natural microflora 
and inoculated 

Listeria innocua 

Edible coating [179] 

Fresh cut apples Citron EO, hexanal, 
E(2)hexenal, Citral, carvacrol 

Natural microbiota 
Listeria monocytogenes, Escherichia coli, 

Salmonella Enteritidis 

Dipping solution [180,181] 

Apple pieces Lemongrass Escherichia coli, endogenous microflora Coating [182] 

Fresh cut apples Vanillin Escherichia coli O157:H7, Listeria spp. Dipping solution [179] 

Fresh cut apples Eugenol and citral Listeria monocytogenes and Salmonella 

Typhimurium 

Edible coating [183] 

Cut persimmon Thyme and lemon EO Natural microbiota Washing solution [184] 

Apple juice Carvacrol, oregano oil, geraniol, 
eugenol, cinnamon leaf oil, 

citral, clove bud oil, lemongrass 

oil, cinnamon bark oil and 
lemon oil 

Escherichia coli O157:H7 Suspensions of oils in apple 
juices 

[185] 

Apple juice Melissa oil, carvacrol, oregano 

oil, terpineol, geraniol, lemon 

oil, citral, lemongrass oil, 
cinnamon leaf oil, and linalool 

Salmonella enterica Suspensions of oils in apple 

juices 

[185] 

Fruit salads Citral 

Citron EO 

Salmonella Enteritidis, Escherichia coli, 

Listeria monocytogenes 

EO added in the syrup [186] 

Vegetables Romaine lettuce Thyme Escherichia coli O157:H7 EO added to washing water [50] 

Romaine lettuce Thymol Escherichia coli O157:H7, Salmonella 

Typhimurium, Listeria monocytogenes 

Washing solution [172] 

Iceberg lettuce Basil methyl chavicol Natural microbiota Washing solution [63] 

Iceberg lettuce Oregano and rosemary Listeria monocytogenes, Yersinia 
enterocolitica, and Aeromonas hydrophila 

Dipping solution [187] 

Lamb’s lettuce Oregano and thyme EO Natural microbiota 

Listeria monocytogenes, Escherichia coli 

Dipping solution [188] 

Lamb’s lettuce Oregano and thyme EO Listeria monocytogenes, 
Salmonella Enteritidis, Escherichia coli, 

Staphylococcus aureus  

Washing solution [189] 

Lettuce Oregano EO Salmonella Typhimurium Washing solution [190] 



Advances in Public Health 

 

27                                                                      www.academicreads.com 

Fresh lettuce Oregano oil Escherichia coli, Listeria monocytogenes, 
Salmonella Typhimurium 

Washing in nanoemulsions [191] 

Fresh-cut lettuce Origanum majorana EO Natural microbiota Dipping solutions 

in combination with 

ascorbic acid and chitosan 

[192] 

Rucola leaves Lemon oil Natural microbiota Coating [193] 

Green beans Tea tree and peppermint EO Natural microbiota Dipping solution [194] 

Green beans Carvacrol Escherichia coli, Salmonella 

Typhimurium 

MAP [195] 

Green beans Mandarin oil Listeria innocua Combined coating and γ-
irradiation treatment 

[196] 

Carrots Thyme Escherichia coli O157:H7 EO added to washing water [50] 

Fresh Baby carrot Pullulan–caraway Salmonella Enteritidis, Staphylococcus 

aureus 

Coating with pullulan films 

containing EO 

[197] 

Zucchini Carvacrol Escherichia coli Washing with 

nanoemulsions 

[198] 

Spinach leaves Carvacrol/ 

Eugenol 

Escherichia coli, Salmonella enterica Washing with 

nanoemulsions 

[199] 

Cucumber slices Carvacrol Escherichia coli Coating and combined with 

pulsed light 

[200] 

Fresh shredded cabbage Mint or thyme Listeria monocytogenes MAP with EO imbibed in 

chitosan film 

[201] 

Broccoli florets Mandarin Listeria monocytogenes Coating [202] 

Four season salad Oregano EO and citral Natural microbiota MAP [203] 

Eggplant salad Oregano oil Escherichia coli O157:H7 EO mixed added directly to 

the food product 

[204] 

Fresh leafy vegetables with 

red beet 

 

Spanish origanum, Spanish 

marjoram, and coriander 

Listeria monocytogenes Dipping solution [205] 

Fresh-cut vegetables Thyme, oregano, and rosemary Listeria monocytogenes MAP + shredded fresh 
herbs (thyme, oregano 

and rosemary) 

[206] 

Fresh-cut mixed celery, 
leek and butternut squash 

Tea tree Escherichia coli O157:H7 Combination of bioactive 
agents (tea tree EO, 

propolis extract, and gallic 

acid) and storage 
temperature 

[207] 

Lettuce, carrot and red 

cabbage 

Oregano and citral Escherichia coli, Salmonella enterica, 

Listeria monocytogenes and natural 

microflora 

MAP [208] 

Broccoli and radish sprouts Carvacrol Salmonella Enteritidis and Escherichia 

coli O157:H7 

Nanoemulsified carvacrol 

washing solution 

[209] 
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Despite the promising results regarding the alternative 

applications of EO in MPVFs, most studies fail to evaluate its 

impact in food quality, concerning sensorial and organoleptic 

qualities. Notably, the studies that do evaluate these features 

seem to show that the use of EO through these innovative 

applications does not interfere with food quality, and in some 

cases, can even improve the visual aspects and taste of the 

produce by reducing spoilage [170–174, 179, 182, 184, 188, 189, 

192, 194, 197, 201, 204, 205, 207–209]. 

 

5. Conclusions 
 

There are microbiological quality challenges associated with the 

preservation of MPFVs, which may lead to outbreaks of 

foodborne diseases. At present, the most widely used 

disinfection methods are both toxic and ineffective [35]. In this 

context, the use of EO has several economic, environmental, and 

health benefits. Thus, the use of these products in techniques 

involving quality preservation and food safety could signify 

great potential in disinfecting MPFVs. However, it is not enough 

to identify a good antibacterial agent, as it must also be 

applicable in the food industry context. This requires a number 

of conditions—that are often not studied on—as a follow-up to 

the various published scientific studies. A good food disinfectant 

for MPFV should: 

 

(1) Be effective at the indicated doses; 

(2) Not be toxic, corrosive, or irritating; 

(3) Be easy to prepare and apply, at a large scale; 

(4)  Be cost-effective; 

(5) Not negatively affect the product’s sensory characteristics. 

 

Few EOs, contrary to common opinion, show realistic potential 

as perfect disinfectants. Nevertheless, a growing body of 

evidence is showing that there are alternative methods to 

incorporate EOs in MPFV food preservatives while minimizing 

its negative effects. Future research should therefore focus on 

technologically innovative applications of EO in MPFVs, using 

realistic EO concentrations, with knowledge-based information, 

aimed at practical applications in real life scenarios. Whilst the 
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antibacterial mechanisms of EOs render them as good 

alternatives to antimicrobials, even in the case of antibiotic 

resistance, there is still a considerable amount of work to 

conduct in order for their full potential to be utilized as food 

preservatives in MPFVs. Important aspects to consider, which 

are often neglected, include the use of realistic approaches, 

standardization of assays (e.g., in temperature, pH, and EO 

composition), and evaluations of the impacts of these 

compounds on the healthy and desirable microbiota of food 

products, per se. 
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