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Abstract 
 

Small-signal instability in a wide frequency range due to the 

dynamic interaction between converters and the AC grid has 

attracted wide attention in recent years. Various 

impedance/admittance-based analysis methods are frequently 

adopted to resolve such problems. However, the stability 

criterion of the heterogeneous multi-converter system is not 

visually straightforward with admittance-based methods, because 

the complex coupling between admittances makes the stability 

criterion very difficult to be reduced. To overcome the 

shortcomings of those methods, an eigenvalue-free small-signal 

stability criterion is proposed by introducing the numerical range 

and Gershgorin discs theorem into the admittance model of 

multi-converter systems. By using Gershgorin discs to cover the 

numerical range of the system frequency domain admittance 

matrix, a transfer function of a single-input and single-output 

(SISO) system with variable weights is induced to perform the 

eigenvalue-free small-signal stability criterion, which provides a 

simple sufficient condition for system stability. Moreover, the 

SISO system is a weighted sum of admittances of heterogeneous 

converters, which illustrates that the stability of a heterogeneous 

multi-converter system is a tradeoff for heterogeneous single-

converter systems. Finally, the effectiveness of the proposed 

method is demonstrated through eigenvalue analysis and 

simulation results based on a multi-converter test system. 
 

Keywords 
 

Small-Signal Stability; Multi-Converter System; Gershgorin 

Discs; Admittance Convex Combination 
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1. Introduction 
 

With the large-scale integration of renewables, flexible AC 

transmission systems (FACTS) and high-voltage DC (HVDC) 

systems, growing penetration of voltage source converters 

(VSCs) emerges in modern power systems, and converter-

dominated power systems will be the future [1]. However, small-

signal instability in a wide frequency range has been observed 

frequently in converter-dominated power systems, which can 

lead to converter tripping, load shedding or system collapse [2]. 

Therefore, the study of analyzing and mitigating oscillations has 

raised considerable attention from academia and industry [3]. 

 

In traditional power systems, synchronous generators (SGs) 

synchronize with the AC grid via physical rotating motion, while 

in the converter-dominated power systems, currently almost all 

the VSCs operated in grid-following mode utilize a phase-locked 

loop (PLL) for grid synchronization [4]. As the PLL-

synchronization mechanism is different from the physical 

synchronization mechanism of SGs, control interactions of VSCs 

will be stronger than those of SGs under high grid admittance 

(i.e., weak grid condition) [5]. Strong control interaction between 

the PLL and other control loops has been identified as the most 

potential cause for oscillation events over the past few years [6-

9]. However, because of the large number of converters and the 

diversity of control configurations in heterogeneous multi-

converter system, oscillation risk assessment of converter-

dominated power systems in practice still encounters great 

challenges [10]. 
 

A linear approximate model with selective equilibriums of large-

scale nonlinear power systems is widely used in oscillation 

analysis. That is because the oscillation of small-signal 

instability is always observed around a certain equilibrium of a 

power system. For multi-converter systems, the oscillation 

analysis methods based on the linear approximate model can be 

divided into two categories: the state-space method and the 

admittance method [11]. The state-space modelling combined 

with participation factor-based approach is first used to analyse 

the effect of PLL and short circuit ratio (SCR) on the small-
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signal stability of a VSC-HVDC converter connected to a weak 

grid [5]. Also, interactions between the PLL of the rotor side 

converter of the double-fed induction generator (DFIG) and the 

AC grid are analysed and controlled via the state-space method 

[12]. For a wind farm of permanent magnet synchronous 

generators (PMSGs) under a weak grid connection, based on the 

character analysis of the reduced-order state-space model, the 

potential instability risk due to the PLL-dominated oscillation 

can be evaluated analytically with the collective parameters of 

PLLs of the PMSGs [13]. Thus far, the effectiveness of the state-

space method in analysing and mitigating the oscillation relevant 

to PLL has relied on the detailed white-box model of converters 

so that the modal analysis can be performed. 

 

However, the state-space model involves the disclosure of the 

internal design and the control apparatuses of converters, which 

cannot preserve commercially confidential detail, especially for 

the fact that the model of a converter is not as standardized as the 

model of a synchronous generator. To address the above 

shortcomings, admittance methods, as black-box models of 

converters, have played a significant role in oscillation analysis 

[14-17]. Admittances are in essence transfer function models of 

converters where the port is usually selected on the electrical 

side with voltage inputs and current outputs. The input-output 

relation is selected depending on the observability of the modes 

over the ports, i.e., the PLL-relevant modes are more observable 

on the electrical side. Besides, the coordinate frame in which the 

voltages and currents are observed can sort different admittance 

methods, e.g., sequence domain admittance model, dq domain 

admittance model, and phasor domain admittance model [18]. 

For single-converter systems, design-oriented single-input and 

single-output (SISO) admittance or transfer functions can be 

induced from different admittance models [19], with which the 

single-converter system’s stability margin can be easily 

identified by the Nyquist stability criterion. 

 

Then, for multi-converter systems, loci of determinant or 

eigenvalues of the return-ratio matrix (RRM) or return-

difference matrix (RDM) are used to identify the system’s 

stability margin [20], which are not visually straightforward 
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because the complex coupling between admittances makes the 

stability criterion very difficult to be reduced to an analytical 

SISO transfer function. For instance, the settling angle-based 

stability criterion for multi-converter systems is proposed by 

[21], where the determinant of RRM or RDM of the admittance 

of the whole system is used to perform the reduced Nyquist 

criterion. On the other hand, grid strength indices based on the 

eigenvalue decomposition of RDM, i.e., generalized SCR 

(gSCR) [22], can be used to approximate the stability margin of 

multi-converter systems by calculating the distance between the 

gSCR and its critical value. However, the validation of the grid 

strength-based stability criterion is limited to inhomogeneous 

converters that have similar control loops and parameters [23]. 

Consequently, the stability criteria for heterogeneous multi-

converter systems still lack physical meaning, and reduced 

stability criteria are more limited in practical applications. 

 

In this paper, an eigenvalue-free small-signal stability criterion 

for PLL-synchronization instability in heterogeneous multi-

converter systems is presented. The major contributions of the 

paper can be summarized as follows: 

 

1) The influence mechanism of each device on the system 

stability is clarified through the analytical formula of device 

weighting, and the stability criterion of the heterogeneous multi-

converter system is proved equal to that of a system composed of 

the weighted sum of these different converters in the 

heterogeneous multi-converter system. Thus, the eigenvalue-free 

small-signal stability criterion illustrates that the stability of a 

heterogeneous multi-converter system can be seen as a trade-off 

of heterogeneous single-converter systems. 

 

2) Inspired by the negative incremental resistor produced by the 

PLL [14], a reduced admittance model of the heterogeneous 

multi-converter system is constructed. By introducing the 

Gershgorin discs theorem [24] to cover the numerical range of 

the system node admittance matrix, the proposed criterion 

significantly reduces the complexity of small-signal stability 

analysis of heterogeneous multi-converter systems and improves 

the practical applicability. 
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3) Furthermore, introducing the transfer function of the SISO 

system with variable weights to perform the Nyquist stability 

criterion provides a simple sufficient condition for small-signal 

stability, but is less conservative. The effectiveness of the 

proposed method is verified by modal analysis and time domain 

simulation of a multi-converter test system. 

 

The rest of this paper is organized as follows. In Section 2, the 

admittance model and order reduction procedure of 

heterogeneous multi-converter systems are described. Then, a 

stability analysis method based on the numerical range and 

Gershgorin discs is performed in Section 3, where an eigenvalue-

free small-signal stability criterion is proposed. Subsequently, 

the simulation results are presented in Section 4 to confirm the 

effectiveness of the theoretical analysis. Finally, the conclusions 

are drawn in Section 5. 

 

2. Small-Signal Stability Analysis Model 
 

Different from the SG which has a rotating mass, converters 

usually synchronize with the AC grid through the PLL, which 

provides a synchronous phase by tracking the terminal voltage. 

Therefore, this paper takes the frequency domain admittance 

model of a VSC-based heterogeneous multi-converter system as 

an example. The grid-connected VSC system is shown in Fig. 1, 

tin which the reactive power outer loop adopts constant reactive 

power control, and the active power outer loop considers two 

control methods: constant DC voltage and constant active power. 
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Figure 1: Grid-connected VSC and its control diagram. 

 
2.1. Converter Dynamics and Control Strategy 
 

The admittance matrix of the LCL filter on the AC grid side of 

the converter and the current inner loop under the dq axis is 

symmetrical. For the convenience of expression, this paper uses a 

complex transfer function to describe this part of the dynamics. 

 

( )g g gV E sL j L I− = +
r r r

  (1) 

 

( )g f fI I sC j C V− = +
r r r

  (2) 

 

( )*

f fsV V sL j L I− = +
r r r

  (3) 

 

( ) ( )* ref

s CC f VFV PI I I j L I f s V= − + +
r r r r r

  (4) 
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where, s is the Laplace operator; Lf is the VSC side filter 

inductance, Lg is the AC grid side inductance, Cf is the filter 

capacitor, PICC(s)=KCCP+KCCI/s is the current inner loop PI 

controller transfer function, ref ref ref

q qI I jI= +
r

 is the complex 

number of the inner loop current reference value, the rest of the 

variables with the same arrow sign are all complex numbers in 

the same form as refI
r

, and ( ) ( )VF VF VF 1f s K T s= +  is a voltage 

feedforward low-pass filter. 

 

The admittance matrixes of the PLL and the outer loop are not 

symmetrical, so their transfer functions in the scalar form need to 

be listed separately. The dynamic equation of the PLL is as 

follows: 

 

( )( )PLL q 0

1
PI s V

s s


 = = +         (5) 

 

where, PIPLL(s)=KPLL+KPLL/s is the PI controller transfer function 

of the PLL,  and is the output phase and frequency of the PLL, 

and 0 represents the system power frequency. 

 

Both the constant reactive power outer loop and the constant 

active power outer loop complete the closed-loop control by 

measuring the AC grid side power signal. Since their forms are 

similar, their dynamic equations can be combined and written as 

follows: 

 

( ) ( )( )ref ref

d PC PQ e e=I PI s f P P−   (6) 

 

( ) ( )( )ref ref

q QC PQ e e=I PI s f Q Q−   (7) 

 

where, PIPC(s)=KPCP+KPCI/s is the transfer function of active outer 

loop PI controller, PIQC(s)=KQCP+KQCI/s is the transfer function of 

reactive outer loop PI controller, fPQ(s)=KPQ/(TPQs+1) is the low-

pass filter of the power measurement link. 

 

The constant DC voltage outer loop dynamically couples the 

active power control of the AC grid side with the capacitor 
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voltage of the DC side. Therefore, in the stability analysis, since 

the DC side capacitance is much larger than the filter capacitor, 

it is necessary to consider the dynamics of the DC side 

capacitance. The dynamic equation is as follows: 

 

( )( )ref ref

d DC dc dc=I PI s V V−   (8) 

 

dc dc dc r eV C sV P P= −   (9) 

 

In addition, the power calculation equations can be calculated: 

 

e d d q qP V I V I= +   (10) 

 

e d q q dQ V I V I= − +                                                                          (11) 

 

where, Pr is the input power of the DC bus, and the dynamics of 

the input power is ignored here, and it is regarded as a constant; 

Qe and Pe are the reactive power and active power of the three-

phase circuit on the AC grid side, respectively. 

 

2.2. Frequency Domain Admittance Matrix 

Characteristics Analysis 

 

In practice, the reactive power compensation provided by 

renewable energy sources is little, so the power factor of the 

VSC can be considered as 1; meanwhile, the PLL-dominated 

synchronous stability problem mainly occurs in the 10~100Hz 

frequency band, while the participation of the AC grid side filter 

capacitor is extremely little in the low and medium frequency 

bands, thus the capacitive circuit in this part can be neglected.  

 

By linearizing equations (1)-(11), the frequency domain 

admittance matrix that reflects the relationship between the 

voltage amplitude/phase and current amplitude/phase at the AC 

grid side of the converter can be obtained by (Suppose the 

current flowing into the converter is in the positive direction, see 

Appendix A for specific derivation): 
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( )

( )
( )VSC

g1

g4

s

Y sI V

Y sI V 

     
=     

     

Y

1 4 4 2 4 4 3

  (12) 

where,  and represent the phase angles of the port voltage and 

current in the global reference xy frame respectively; YVSC(s) is 

the frequency domain admittance matrix in polar coordinates, 

Yg1(s) indicates the magnitude loop: V I → , and Yg4(s) 

indicates the phase loop: V I  →  , its specific elements are as 

follows: 

 

VF 1 APC d0
g1

I APC d0

VF d0 PLL RPC PLL I d0
g4

I RPC d0 I RPC d0

( ) ( ) ( )
( )

( ) ( ) 1

( )(1 ( )) ( ( ) ( )) ( )
( ) =

( ) ( ) 1 ( ) ( ) 1

G s G s G s I
Y s

G s G s V

G s V G s G s G s G s I
Y s

G s G s V G s G s V

+
= +


− + −

 + +

            (13) 

 

where, the subscript ‘0’ of the physical quantity indicates the 

steady-state value of the physical quantity: d0 1.0p.u.V =  ,

d0 1.0p.u.I = , etc.; the transfer function Gxx in (13) is given as 

below: 

 

PLL PLL d0
PLL

RPC QC PQ

VF VF f CC

I CC f CC

DC dc0 dc

APC

PC PQ

( ) ( )
( ) / (1 )

( ) ( ) ( )

( ) (1 (s))/( ( ))

( ) ( ) / ( ( ))

( ) / , Constant DC voltage outer loop
( )

( ) ( ),  Constant active 

PI s PI s V
G s

s s

G s PI s f s

G s f sL PI s

G s PI s sL PI s

PI s sV C
G s

PI s f s

= +

=

= − +

= +

=
power outer loop










 



        (14) 

 

In order to analyze the synchronous stability mechanism with 

small disturbance, find vital factors and analyze the interaction 

between matrix elements, it is necessary to simplify the 

frequency domain admittance matrix: 

 

• Only retain Yg4(s) representing the phase loop; 

• Neglect the phase angle difference of different converter grid-

connected buses. 
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Here is an illustration of the rationality of the above 

simplifications: 

 

According to (13), it is seen that the PLL transfer function only 

appears in the element Yg4(s). In addition, according to the actual 

operation data of the East China Power Grid, the phase angle 

deviation between buses is generally less than 10°, thus, by 

considering that the capacity of the converter is much smaller 

than that of SG, the phase angle difference of 5° is taken as a 

reference value and substituted into the following frequency-

domain admittance matrix model of the open-loop system of the 

converter [22]: 

 

( )

( )

( ) ( )

( ) ( )
g1 g(1,1) g(1,2)1

g4 g(2,1) g(2,2)

cos sin

sin cos

g

g

I V

I V

Y s Y s Y s

Y s Y s Y s

 

 

 

−

     
=    

    
    

= =    
   


  =   − 

Y

Y T T

T

                        (15) 

 

where T is the frame rotation matrix, which specifically 

represents the transformation from the dq rotation reference 

frame of the controller to the global xy rotation reference frame, 

and   is the voltage phase angle of the converter bus. The 

parameters required are shown in Table 1. 

 
Table 1: Parameters of converter controller. 
 

Symbols Descriptions Values 

Lf Filter inductor 0.05p.u. 

PIDC(s) DC voltage outer loop transfer function 10+4/s 

PIPC(s) Active power outer loop transfer function 0.3+5/s 

PIQC(s) Reactive power outer loop transfer function 0.3+5/s 

PIcc(s) Current inner loop transfer function 1+10/s 

PIPLL(s) PLL transfer function of VSC 8+7800/s 

fVF(s) Voltage feed-forward low-pass filter 1/(1+0.01s) 

fPQ(s) Power measurement low-pass filter 1/(1+0.001s) 

P, Q Active and reactive power output 1p.u.,0p.u. 
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The bode diagrams of Yg under different outer loop control 

modes are drawn below. As shown in the blue area in Fig. 2, in 

the sub/supersynchronous oscillation frequency band 

(10Hz~100Hz) dominated by PLL, the amplitude of the phase 

loop Yg(2,2)(s) is greater than 0 dB, and the amplitudes of the other 

elements in Yg are less than 0 dB. Therefore, Yg(2,2)(s) becomes 

the dominant oscillation link and provides a larger negative 

resistance. 

 

 
 
Figure 2: Bode plot of converter open-loop system. 
 

The above analysis proves the validity of the assumptions used 

in this paper. 

 

Using the frequency domain admittance matrix of the multi-

converter system in [22], and recombining its matrix elements, 

the approximated frequency domain admittance matrix Ysys of 

the multi-converter system can be obtained as follows: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
g1

sys

g4 g4

s s s s

s s s s

   

   

+   
 =   

− + − +   

Y B B B B
Y

B Y B B Y B
            (16) 

 

where, the specific expressions of the scalar functions ( )s and

( )s are ( )2 2

0 0s s + and ( )2 2 2

0 0s +  separately; B and Yg4 are 

both matrices, the former is the node admittance matrix of the 



Top 10 Contributions in Energy Research 

13                                                                      www.academicreads.com 

multi-converter system, and the latter is a diagonal matrix 

formed by the admittance elements of the individual converters, 

more details are shown in (17) and (18). 

 

11 12 1

21 22 2

1 2

n

n

n n nn

B B B

B B B

B B B

 
 
 =
 
 
 

B

K

K

M M M M

K

            (17) 

 

( ) ( ) ( )g4 g4,1 g4,n( , , )s diag Y s Y s=Y K   (18) 

 

where, ( )diag g  represents a diagonal matrix, and the diagonal 

elements are in parentheses; the elements of B are real numbers 

in terms of per-unit values, and the diagonal elements are 

positive. 

 

The stability of the multi-converter system can be analyzed by 

using the determinant of the frequency domain admittance 

matrix Ysys, that is, to solve the polynomial about s represented 

by (19). If the real part of s obtained is all negative, then the 

multi-converter system is stable with small disturbance, and 

vice-versa, the system is unstable. 

 

( )sysdet 0=Y                                                                                (19) 

 

By further observing the structure of the system frequency 

domain admittance matrix Ysys in (15), and according to

( )( )det 0s B , the equivalent condition of (19) can be obtained: 

 

( ) ( ) ( ) ( )( )( )1 2

sys g4det 0 det ( ) 0s s s s  
−

=  + + =Y Y B                  (20) 

 

The reduced-order admittance matrix of multi-converter system 

Ysys0 is recorded as: 

 

( ) ( ) ( )( )1 2

sys0 g4( ) ( )s s s s s  
−

= + +Y Y B                    (21) 
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In the following, the analytical expression of the eigenvalue 

trajectory cluster of the multi-converter system will be deduced 

according to the equivalence condition (20), combined with the 

application of the numerical range and the Gershgorin Discs 

theorem. 

 

3. Eigenvalue-Free Small-Signal Stability 

Criterion Of PLL-Based VSC 
 

The stability of the multiple input multiple output (MIMO) 

system is mainly analyzed through the Generalized Nyquist 

Criterion (GNC), which is essential whether the Nyquist curve of 

the eigenvalues of the frequency domain admittance matrix 

Ysys0(s) encloses the (0, j0) point. In practice, the complex 

numbers corresponding to different frequencies are substituted 

into s to obtain all the eigenvalues of Ysys0(s), and then connected 

frequency by frequency to form multiple interwoven Nyquist 

curves. Although the physical meaning of the admittance method 

itself is clear, the GNC relies on a point-by-point eigenvalue 

decomposition of a high-dimensional matrix over a wide 

frequency band and therefore is not available in analytic form, 

which results in a stability criterion that is only indicative of the 

stability of the system and lacks the necessary physical 

interpretation. 

 

Because of the above problems, this section first simplifies the 

eigenvalue trajectory cluster of the reduced-order admittance 

matrix Ysys0 through the numerical range, and then uses the 

Gershgorin Discs to cover the numerical range of the node 

admittance matrix on the AC grid side to achieve a SISO transfer 

function or the eigenvalue-free stability criterion. Finally, the 

physical meaning of the eigenvalue-free small-signal stability 

criterion of the multi-converter system is explained by using the 

subordination relationship between the Gershgorin discs and the 

numerical range. 

 

3.1. Numerical Range Criterion 

 

The numerical range is a widely used tool for matrix analysis, as 

described in Definition 1. 



Top 10 Contributions in Energy Research 

15                                                                      www.academicreads.com 

Definition 1 [24]: Define the complex number set *x xA  as the 

numerical range F(A) of matrix A, and the norm of the vector x is 

equal to 1, that is, 1x = . F(A) can be calculated by: 

 *( ) | , 1nF x x x x=  =A A £              (22) 

 

where n£  is an n-dimensional complex vector field, and the 

superscript * represents the conjugate operation. 

 

The general properties of the numerical range defined by (22) are 

introduced through Lemma 1. 

 

Lemma 1: Assuming that A is a  complex square matrix, 

the following three conditions are satisfied: 

 

• If  is any main submatrix of A, then 
k( ) ( )F A F A  is 

established; 

• ( )F A  contains all of the eigenvalues of A; 

• ( )F A  contains all of the diagonal entries of A. 

 

The proof process of Lemma 1 can be found in [24]. The 

purpose of introducing Lemma 1 in this paper is to explain that 

the GNC of the system frequency domain admittance matrix is 

all subordinate to the numerical range of the matrix. It is worth 

noting that when the A is a normal matrix, the numerical range

( )F A  of A is the convex hull of its eigenvalues [25], hence, the 

following relationship exists: 

 

( ) ( )A F A  =       (23) 

 

where,   is the eigenvalue of A, and ( )A  is the whole of all 

eigenvalues of A, which is called spectrum. 

 

In this part, the numerical range criterion for the PLL oscillation 

mode of the multi-converter system will be illustrated in the 

form of conclusions. First, let ( ) B  be the eigenvalue set of B.  

 

Conclusion 1: For the small-signal stability analysis model 

represented by the reduced-order admittance matrix Ysys0 of the 

n n

kA
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multi-converter system, the Nyquist curve of each device 

( ) ( )1 1 2

g4,i min / ( ( ) ( ) ( ) )Y s s s s   − −+B  in the system does not 

surround the (-1, j0) point can be a sufficient condition for the 

small-signal stability of the system. 

 

Then, the derivation process of Conclusion 1 is shown below. 

According to the conditions in Lemma 1, the eigenvalue λ(Ysys0) 

of Ysys0 satisfy the following conditions: 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 1 2

sys0 i i4,i i min max| =1, ,Y s s s s         
−

 + +    Y B B    (24) 

 

where, i  is the weighting coefficient of the device admittance 

element Yg4,i, which satisfies i =1  and i 0  ; ( )i g4,iY s  is the 

numerical range of the converter admittance, which is also a 

convex combination of Yg4(s) diagonal elements; 

( ) ( ) ( )( )1 2
s s s   

−
+  is the numerical range of the AC side 

matrix ( ) ( ) ( )( )1 2
s s s  

−
+B , by using Lemma 1 and the 

numerical range properties of normal matrix B, it can be 

obtained that ( ) ( )min max,B B     , where λmin(B) and λmax(B) 

represent the minimum and maximum eigenvalues of B, 

respectively. 

 

It is worth mentioning that the smaller   is, the worse the small-

signal stability of the system is [23]. To simplify the analysis 

process, ( )min = B  can be set to obtain a sufficient condition for 

the system’s small-signal stability. In addition, it is necessary to 

note that ( ) ( ) 1 2

g4,i min ( ( ) ( ) ( ) )Y s s s s   −+ +B is also the pole of the 

convex combination ( ) ( ) 1 2

i g4,i min ( ( ) ( ) ( ) )Y s s s s    −+ + B , so 

the Nyquist curve of each converter

( ) ( )1 1 2

g4,i min / ( ( ) ( ) ( ) )Y s s s s   − −+B  in the system does not 

surround the (-1, j0) point, which can be used as a sufficient 

condition for assessing the small-signal stability of the multi-

converter system.  

 

However, as the scale of the power grid becomes larger, the 

order of the node admittance matrix B will become higher, and it 
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will be more difficult to calculate the eigenvalues, which loses 

the advantages of simplicity and convenience of the numerical 

range method. 

 

3.2. Eigenvalue-Free Small-Signal Stability Criterion 

 

Gershgorin disk theorem is widely used in the estimation and 

location of eigenvalues of matrices. In order to reduce the 

computational burden caused by solving the eigenvalues of the 

high-dimensional matrix, this section uses the Gershgorin disk 

theorem to cover the numerical range of the system node 

admittance matrix B. For a n n  square matrix, there are n row 

disks and column disks, and their eigenvalues are located in 

these discs. The specific definition is shown below: 

 

Definition 2 [24]: Assuming that A is a n n  complex square 

matrix, the closed discs can be expressed as: 

 

( ) '( ) | | ( ) , 2,...,i

ii iG A z a R A i n= −    =£            (25) 

 

where, '( )=i ijj i
R A a

  is interpreted as the row sum, are called 

the Gershgorin discs, £  is the complex plane, and 
( )

1(A) (A)n i

iG G==U is the Gershgorin region. 

 

The following lemma introduces the general properties of the 

Gershgorin region defined by (25). 

Lemma 2: Assuming that A is a n n  complex square matrix, 

then the relation ( ) ( ) ( )TA G A G A   holds. 

 

The proof process of Lemma 2 can be found in [24]. This lemma 

states that any eigenvalue of A is in both row and column disks. 

When A is a symmetric normal matrix, its eigenvalues are all 

real numbers, and the inclusion relationship of the three ranges, 

i.e., the numerical range, Gershgorin region and eigenvalue 

range of A is ( ) ( ) ( ) ( )TA F A G A G A  =   , as shown in Fig. 3. 
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Figure 3: Relationship among the three ranges 
 

The purpose of introducing the Gershgorin discs in this paper is 

to illustrate that the numerical range of the system node 

admittance matrix B is all subject to the Gershgorin region of B. 

Based on this, the eigenvalue-free small-signal stability criterion 

of the PLL-based VSC in multi-converter systems can be 

constructed. First, let ( )G B  be the distance from the boundary of 

Gershgorin region of B to the origin. Then, the eigenvalue-free 

small-signal stability criterion described by the following 

conclusion can be obtained. 

 

Conclusion 2: For the small-signal stability analysis model of 

the multi-converter system represented by Ysys0 in (20), the 

Nyquist curve of each device ( ) 1 2

g4,i min/ ( )( ( ) ( ) ( ) )Y s G s s s  −+B  in 

the system does not surround the (-1, j0) point can be a sufficient 

condition for the stability of the system. 

 

Then, the derivation process of Conclusion 2 is shown below. 

According to the Lemma 1 and Lemma 2, all eigenvalues of the 

normal matrix B  will lie in the Gershgorin region of B , hence, 

the eigenvalue λ(Ysys0) of Ysys0 satisfy the following conditions: 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 1 2

sys0 i i4,i i min max| =1, ,Y s k s s s k G G     
−

 + +    Y B B  (26) 

 

where, i  is the weighting coefficient of the device admittance 

element Yg4,i, which satisfies i =1  and i 0  ;  

( ) ( ) ( )( )1 2
k s s s  

−
+  is the numerical range of 

( ) ( ) ( )( )1 2
s s s  

−
+B . According to the Gershgorin discs, it can 

be obtained that ( ) ( )min max,k G B G B   , where ( )minG B  and 
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( )maxG B  represent the closest distances of the minimum and 

maximum Gershgorin region boundaries of B  to the origin, 

respectively. 

 

Similar to the proof process of Conclusion 1, setting ( )mink G= B  

obtains a sufficient condition for the stability of the system with 

small disturbance. Also, the ( ) ( ) 1 2

g4,i min ( ( ) ( ) ( ) )Y s G s s s  −+ +B  is 

the pole of the convex combination 

( ) ( ) 1 2

i g4,i min ( ( ) ( ) ( ) )Y s G s s s   −+ + B , so the Nyquist curve of 

each converter ( ) 1 2

g4,i min/ ( )( ( ) ( ) ( ) )Y s G s s s  −+B  in the system 

does not surround the (-1, j0) point can be used as a sufficient 

condition to evaluate the small-signal stability of the multi-

converter system. 

 

 It is critical to emphasize that the introduction of the Gershgorin 

discs theorem enables the proposed criterion to have the 

following properties: 

 

• It is unnecessary to calculate the eigenvalues of the system 

frequency domain admittance matrix when analyzing the small-

signal stability of the heterogeneous multi-converter systems; 

• Decentralized computing can be achieved without global 

information due to that the Gershgorin discs of B can be 

calculated using local information of buses. 
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Figure 4: Multi-converter system. 
 

To illustrate the decentralized computing process of the 

criterion, the node admittance matrix B of an equivalent 

simplified model of the multi-converter system shown in Fig. 4 

is obtained as follows: 

 

1 12 13 12 13

12 2 12 23 23

13 23 3 13 23

1 1 1 1 1
+ +

1 1 1 1 1
+ +

1 1 1 1 1
+ +

g

g

g

L L L L L

L L L L L

L L L L L

    

    

    

 
− − 

 
 
 = − −
 
 
 − −
 
 

B  (27) 

 

where, Lgi is the equivalent inductance between bus i and the AC 

grid, and Lij is the connection inductance between bus i and bus j. 

Take the calculation of the Gershgorin discs of a certain row or 

column in B as an example, only inductances of lines connected 

to the bus corresponding to the diagonal element of matrix B are 

used, as shown in (28). 



Top 10 Contributions in Energy Research 

21                                                                      www.academicreads.com 

(1)

1 12 13 12 13

1 1 1 1 1
( ) | ( + + ) | ( )

g

G z
L L L L L    

  
= −  + 

 

B

                      (28) 

 
To sum up, the criterion proposed in this paper only uses the 

local information of the multi-converter system, that is, Yg4,i(s) 

representing the dynamics of the converter phase loop and the 

row or column of the node admittance matrix B. In practical 

engineering applications, it is easy to obtain B. Therefore, the 

proposed criterion solves the problem of poor observability of 

GNC of high-dimensional matrices and provides the possibility 

of decentralized implementation. 

 

3.3. The Significance of the Eigenvalue-Free Small-

Signal Stability Criterion 

 

First, it can be seen that in (26) that the admittance of the VSCs 

in the numerical range can be expressed as a convex combination 

of the admittance Yg4,i(s) of multiple PLL-based converters. This 

convex combination form of converters mathematically explains 

why the stability of the heterogeneous multi-converter system 

can be expressed as the result of a compromise between the 

stability of the single-converter systems of multiple 

heterogeneous converters [23]. In addition, the eigenvalue 

trajectory clusters of the multi-converter system are contained in 

the numerical range and reduced to a SISO transfer function with 

variable coefficients, therefore, when analyzing the small-signal 

stability of the heterogeneous multi-converter system, the 

proposed criterion can significantly reduce the computation of 

high-dimensional matrices. Finally, the eigenvalue-free small-

signal stability criterion uses Gershgorin discs to converter the 

numerical range to perform a sufficient condition for the small-

signal stability of the multi-converter system. Although it is 

conservative to a certain extent, it has obvious significance in the 

actual engineering application of the heterogeneous multi-

converter systems. 
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4. Case Analysis 
 

To verify the effectiveness of the proposed criterion, a small-

signal analysis model of the double-converter system is carried 

out in Matlab/Simulink for case studies. Two-level voltage 

source converter (VSC) based on PLL synchronization is used as 

a source-side renewable energy type, which is mainly used in 

Type 4 Wind Turbine Generators, Photovoltaic Power 

Generators, and Voltage Source Converter based High Voltage 

Direct Current Transmission (VSC-HVDC). The topology and 

parameters of the simulation system are shown in Fig. 5 and 

Table 2, respectively. 

 

 
 

Figure 5: Schematic diagram of double-converter system. 

 
Table 2: Parameters of double-converter system. 

 
Symbols Descriptions Values 

S, UN Rated capacity and voltage of the AC 

system 

1500kVA, 690V 

SB Rated capacity of power electronic device 1500kVA 

Vdc Rated voltage on the DC side 1100V 

Cdc Capacitance on the DC side 0.038p.u. 

Lf Inductance of the filter 0.05p.u. 

RLine Resistance of the AC grid 0.05p.u. 

Lg Inductance of the AC grid 0.2pu 

L12 Mutual inductance of the AC grid 0.1pu 

PIPLL1(s) PLL transfer function of VSC1 26+7800/s 

PIPLL2(s) PLL transfer function of VSC2 36+3600/s 
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4.1. Validity Analysis of Eigenvalue-Free Small-Signal 

Stability Criterion 

 

In this section, by comparing the influence of different stability 

criteria on system stability analysis under different power grid 

strengths, the effectiveness of the eigenvalue-free small-signal 

stability criterion is illustrated. According to Table 1, the system 

parameters of the two converters are set, and the grid-side node 

admittance matrix based on the p.u. value parameters is as 

follows: 

 

B

15 10
=

10 15
k

− 
 
− 

B                                      (29) 

 

where, Bk  is parameter to adjust the grid strength of the system. 

Assuming kB=1, at this time, the gSCR or the minimum 

eigenvalue of B of the system is set at approximately 5. 

According to engineering experience, under the condition of this 

gSCR, the system is stable with a small disturbance. The Nyquist 

curves of the eigenvalue-free small-signal stability criterion in 

the grid-connected system of the two converters are plotted 

according to Conclusion 2, as shown in Fig. 6. As can be seen, 

the Nyquist curves of eigenvalue-free small-signal stability 

criterion ( ) 1 2

g4,i min/ ( )( ( ) ( ) ( ) )Y s G s s s  −+B  (i=1,2) corresponding 

to the heterogeneous converters VSC1 and VSC2 do not enclose 

the (-1,0) point, indicating that the system is stable. To verify the 

validity of the above results, the generalized Nyquist curves of 

the full-order frequency-domain admittance matrix of the 

double-converter system with Yg1 in (16) are plotted in Fig. 7. It 

can be seen from Fig. 7 that the four generalized Nyquist curves 

also do not enclose the (-1,0) point, indicating that the system is 

stable. The above results demonstrate the effectiveness of the 

method proposed in this paper. 
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Figure 6: Eigenvalue-free small-signal stability criterion of double-converter 

system (gSCR=5). 

 

 
 

Figure 7: Generalized Nyquist curves of double-converter system (gSCR=5). 

 

4.2. Conservativeness Analysis of Eigenvalue-Free 

Small-Signal Stability Criterion 
 

Let B 0.28k = , at this time, the gSCR of the system is set at 1.4, 

and the eigenvalue-free small-signal stability criterion and GNC 

are shown in Fig. 8 and Fig. 9, respectively. In this case, the 

eigenvalue-free small-signal stability criterion in Fig. 8 encloses 

the (-1, j0) point, and the system is unstable; However, all 

trajectories in Fig. 9 do not enclose the (-1, j0) point, the system 

is in a stable state. The results shown below illustrate that the 
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eigenvalue-free small-signal stability criterion proposed in this 

paper is somewhat conservativeness compared with the GNC. 

 

 
 

Figure 8: Generalized Nyquist curves of double-converter system under weak 

grid strength. 
 

 
 

Figure 9: Generalized Nyquist curves for the double-converter system under 

weak grid strength. 

 

4.3. The Influence of Different Weight Ratios on the 

Conservativeness of the Eigenvalue-Free Small-Signal 

Stability Criterion 
 

Considering that the criterion proposed in this paper has a certain 

degree of conservativeness, in this section, a heuristic 
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exploration of the future development direction of this criterion 

is conducted through traversal to explore whether the device 

weighting method can reduce the conservation of the criterion 

proposed in this paper. 

 

The following device weighting process is performed on the 

double-converter system in the modelling part. 

 

, 4,1 4,2, 1, 1,2,w g gm n m n = + + = =Y Y Y L  (30) 

 

where, m and n are the weighting coefficients of VSC1 and VSC2 

respectively, ,w Y  is the weighted converter. 

 

 
Figure 10: Proposed criterion of weighted converter system under weak grid 

strength. 
 

Figure. 10 shows the influence of different weight ratios on the 

conservativeness of eigenvalue-free small-signal stability 

criterion under weak grid strength (gSCR=1.4). The above 

results show that the Nyquist curves of the criterion proposed in 

this paper under different weight ratios are within the range of 

the two curves of VSC1 and VSC2, and the conservativeness of 

the criterion can be reduced with the change of the weighting 

coefficient. This is because the eigenvalue-free small-signal 

stability criterion is a sufficient condition, which is a criterion 

obtained by drawing the Nyquist curves corresponding to the 

admittances of each converter one by one based on the minimum 

eigenvalue of the node admittance matrix B. 
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4.4. Comparison and Analysis of Eigenvalue 

Calculation Results and Eigenvalue-Free Small-Signal 

Stability Criterion 
 

Although Section 4.1 has demonstrated the effectiveness of 

Conclusion 2 through comparative analysis with the GNC, there 

is still a lack of more precise explanations for the adequacy of 

the eigenvalue-free small-signal stability criterion. In the 

following, the dominant eigenvalues of the system are 

supplemented according to the node admittance matrix in (29), 

and then the equation about the Laplacian operator s in (19) is 

calculated to obtain the distribution of system eigenvalues, as 

shown in Fig. 11. 

 

 
 

Figure11: Distribution of eigenvalues of double-converter system. 
 

Specifically, by changing the node admittance matrix B and 

decreasing the parameter kB from 0.8 to 0.2 in 0.01 per step, the 

power grid strength can be continuously declined. It can be seen 

that as the power grid strength decreases, the determinant zero 

point of the frequency-domain admittance matrix of the double-

converter system gradually moves to the right half plane, and the 

stability of the system with small disturbance becomes worse. 
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It can be seen from Fig. 12 that the dominant eigenvalue of the 

system moves to the right half plane, varying from -10.84±89.8i 

to 13.89±68.52i, and the system changes from stable to unstable. 

Among them, when kB is about 0.32, the dominant eigenvalue 

(0.12±86.2i) of the system is closest to the imaginary axis, which 

corresponds to the critical stability condition of the system. 

 

 
 

Figure 12: Variation trajectory of dominant eigenvalues of double-converter 

system. 

 

Figure. 8 and Fig. 9 respectively depict the curves of the 

eigenvalue-free small-signal stability criterion and the GNC 

under weak grid strength. The eigenvalue-free small-signal 

stability criterion judges that the system is unstable, while the 

GNC judges that the system is stable. It is proved that the 

eigenvalue-free small-signal stability criterion in Conclusion 2 is 

a sufficient condition. 

 

4.5. Double-converter System Time-Domain Simulation 

Verification 

 

According to the double-converter topology shown in Fig. 5, the 

average model and detailed switching model are established 

respectively. The time-domain simulation analysis of the average 

value model is as follows, and the simulation results of the 

detailed switch model are shown in Appendix C. 
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If kB=0.32, the system is critically unstable, and the output active 

and reactive power of the double-converter system is shown in 

Fig. 13. The results show that a subsynchronous oscillation of 

about 14.5 Hz occurs, which, together with the results in Fig. 8 

and Fig. 9, shows that the eigenvalue-free small-signal stability 

criterion proposed in this paper can accurately identify the risk of 

system instability. 

 

 
 

Figure 13: Time-domain simulation results of the double-converter system. 

 

4.6. IEEE 39-Bus Test System Time-Domain Simulation 

Verification 

 

To further verify the effectiveness of the proposed criterion, the 

topology of the IEEE 39-bus test system shown in Fig. 14 is 

adopted, and the synchronous generators in the original system 

are replaced with converters. Specifically, only the infinite bus 

with equivalent value through the external grid in the original 

system is retained, and the remaining synchronous generators are 

replaced with VSCs with a capacity of 1.0 p.u. The control 

parameters are shown in Table 3. 

 
Table 3: Parameters of the IEEE 39-bus test system. 

 

Symbols Descriptions Values 

PI1(s) PLL transfer function of VSC1, 

VSC2 and VSC9 

26+7800/s 

PI2(s) PLL transfer function of VSC3 and 

VSC4 

36+7800/s 

PI3(s) PLL transfer function of VSC5 and 

VSC6 

26+3800/s 

PI4(s) PLL transfer function of VSC7 and 

VSC8 

36+3800/s 
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Figure 14: The IEEE 39-bus system. 
 

Proportionally increasing the line parameters yields that the 

strength or gSCR of the IEEE 39-bus system is reduced to 1.43, 

resulting in the system time domain simulation curve shown in 

Fig. 14. It can be seen that the damping is very small, and the 

system is in a critical stable state. 

 
 

Figure15: Time-domain simulation results of the IEEE 39-bus system test 

system. 
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Figure16: Eigenvalue-free small-signal stability criterion of the IEEE 39-bus 

system test system (gSCR=1.43). 
 

It can be seen from the results in Fig. 16 that when the gSCR of 

the system is 1.43, the criterion proposed in this paper is 

unstable. The time-domain simulation result in Fig. 15 shows 

that the system is close to critical stability under this gSCR, thus 

proving the criterion proposed in this paper is a sufficient 

condition for small-signal synchronization stability with 

applications to PLL-dominated oscillation mode analysis. 
 

Furthermore, the proposed method is only related to device 

dynamics and system node admittance matrices B, eliminating 

the need for calculating eigenvalues of the admittance matrix Ysys 

at each frequency point, a requirement in methods like the GNC. 

This key distinction significantly reduces the computational 

burden associated with solving high-dimensional matrices during 

large network analysis. 
 

Additionally, Fig. 16 illustrates that converters operating under 

identical control parameters exhibit identical curves. This 

observation suggests that, when the minimum eigenvalue of the 

node admittance matrix B is consistent, converters with the same 

control parameters located at different locations within the 

system exhibit equivalent stability. However, it's noteworthy that 

the method proposed in this paper has a limitation—it does not 

account for the influence of device location on overall system 

stability. 
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In summary, while the proposed method simplifies calculations 

by focusing on device dynamics and system node admittance 

matrices, it may not capture stability changes due to differences 

in device positions within the system. 

 

5. Conclusion 

 

Due to the large number and variety of converter controls, the 

GNC based on the eigenvalue trajectory is difficult to apply to 

the stability analysis of high-dimensional systems. To handle the 

problems of the heavy computational burden, poor observability 

and unclear physical meaning of the GNC for frequency domain 

admittance matrix of heterogeneous multi-converter systems, an 

eigenvalue-free small-signal stability criterion has been 

proposed. The analytical equation of the device weighting in the 

proposed criterion has revealed the stability mechanism of the 

multi-converter system as a compromise of the stability of each 

single-converter system. Moreover, the system frequency 

domain admittance matrix has been reduced to a SISO transfer 

function by using the numerical range and Gershgorin discs, 

which has resolved the problem of the large computational 

burden of high dimensional matrix eigenvalue solving. Finally, 

the criterion proposed in this paper is a sufficient condition for 

small-signal stability, but it is less conservative. In the future, the 

conservative property of the stability criterion can be reduced by 

reasonably setting the device weighting weight ratio under weak 

grids. 
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Appendix A 

 

There are two frames in the converter grid-connected system: the 

dq control frame based on the PLL and the global xy frame. 

Among them, the dq frame rotates at the angular frequency ω 

measured by the PLL, and the xy frame rotates at the 

synchronous speed 𝜔0. The relationship between the two is 

shown in Fig. A. Similar to the derivation of the small-signal 

model of multi-synchronous machines in power systems, the 

dynamics of the converter in the dq control frame are first 

deduced, then transformed into global xy frame, and finally its 

admittance model is established in polar coordinates. 

 
 
Figure A: Relationship between dq frame and xy frame. 
 

By linearizing (3)-(5), the dynamic small-signal model of the 

filter inductor, PLL and converter inner loop in the dq frame can 

be obtained as: 

 

Filter inductor dynamics: 

 
*

f 0 f f 0

*

f 0 f f 0

sd d d q q

sq q q d d

V V sL I L I L I

V V sL I L I L I

 

 

 −  =  −  − 

 −  =  +  + 

r

r    (A1) 
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PLL dynamics: 

 

( )PLL PLL q

PLL

s PI s V

s



 

 = 

 = 

   (A2) 

 

Current inner loop dynamics: 

 
*

0 f

*

0 f

( ) ( ) ( )

( ) ( ) ( )

ref

sd d d CC q VF d

ref

sq q q CC d VF q

V I I PI s L I f s V

V I I PI s L I f s V





 =  −  −  + 

 =  −  −  + 

r

r    (A3) 

 

where, PIPLL(s) is the PLL transfer function of VSC, 

PICC(s)=KCCP+KCCI/s is the current inner loop PI controller 

transfer function, fVF(s)=KVF/(TVFs+1) is a voltage feedforward 

low-pass filter. 

 

Substituting (A2) into (A1) and (A3), the relationship between 

current and voltage in dq frame can be obtained by: 

 

PLL 0

PLL 0

( )1 ( ) ( )

( ) ( ) ( )

( )1 ( ) ( )

( ) ( ) ( )

f q refVF CC
d d q d

f CC f CC f CC

f d refVF CC
q q q q

f CC f CC f CC

L PI s If s PI s
I V V I

sL PI s sL PI s sL PI s

L PI s If s PI s
I V V I

sL PI s sL PI s sL PI s

 −
 = −  +  + 

+ + +


− = −  −  + 
 + + +

 (A4) 

 

By linearizing the outer loop dynamic equations (6)-(11), the 

dynamic small signal model of converter outer loop in the dq 

frame can be obtained as: 

 

 

 

Reactive power outer loop: 

 

( )ref

QC PQ e= ( )qI PI s f s Q    (A5) 

 

Constant active power control: 

 
ref

d PC=- ( ) ( )PQ eI PI s f s P     (A6) 

 

Constant DC voltage control: 
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dc0 dc dc esV C V P = −   (A7) 

 

Power equation: 

 

0 00

0 00

d d q de d

q q d qe d

I I I VP V

I I I VQ V

          
= +          −  −         

  (A8) 

 

Substituting (A5)-(A8) into (A4), the admittance characteristics 

of the converter port in dq frame is shown below (Suppose the 

current flowing into the converter is in the positive direction)： 

 

q0 APC I q0
VF 1 APC d0

I APC d0 I RPC d0

VF d0 RPC I d0
I RPC 0

I RPC d0 I RPC d0

( )
(1 ( )) ( ) ( )

( ) ( ) ( )

( ) ( ) 1 ( ) ( ) 1

( )
( ) (1 ( )) ( ) ( )( ) ( )

( ) ( ) 1 ( ) ( ) 1

PLL
I

d

q PLL
I

q

PI s
G s I G s G s I

G s G s G s I s
I G s G s V G s G s V

I PI s
G s G s I G s G s IG s G s I s

G s G s V G s G s V

− − +
+

 + + 
= 

  + − −

+ +

( ) ( )

( ) ( )

d

q

ddd dq

qd qq q

V

V

VY s Y s

Y s Y s V

 
 
 

  
     

 
  

  
=   

   

(A9) 

 

where, the subscript ‘0’ of the physical quantity indicates the 

steady-state value of the physical quantity: d0 1.0p.u.V =  ,

d0 1.0p.u.I = , etc.; the transfer function Gxx is given as below: 

 

RPC QC PQ

VF VF f CC

I CC f CC

DC dc0 dc

APC

PC PQ

( ) ( ) ( )

( ) (1 (s))/( ( ))

( ) ( ) / ( ( ))

( ) / , Constant DC voltage outer loop
( )

( ) ( ),  Constant active power outer loop

G s PI s f s

G s f sL PI s

G s PI s sL PI s

PI s sV C
G s

PI s f s

=


= − +


= +


 = 
 

 

According to Fig. A, the conversion relationship between voltage 

and current between the dq frame and the xy frame can be 

obtained: 

 

cos sin

sin cos

cos sin

sin cos

d xPLL PLL

q yPLL PLL

d xPLL PLL

q yPLL PLL

V V

V V

I I

I I

 

 

 

 

−    
=    
    

−    
=    
    

  (A10) 

 



Top 10 Contributions in Energy Research 

38                                                                      www.academicreads.com 

Linearize (A10) and combine with (A2), the conversion 

relationship between voltage and current between the dq frame 

and the xy frame can be rewritten as: 

 

0

0

1

1 ( )

0 ( )

0 ( )

d x

q yPLL

d x xPLL q

q y yPLL d

V V

V VG s

I I VG s I

I I VG s I

     
=     −    

        
= +        −      

  (A11) 

 

where, PLL PLL d0
PLL

( ) ( )
( ) / (1 )

PI s PI s V
G s

s s
= + . 

 

Then, substitute (A11) into (A9) to obtain the admittance matrix 

of the converter in global xy frame: 

 
PLL APC I q0VF 1 APC d0

I APC I RPC

I RPC 0 PLL VF PLL RPC I d0

I RPC I RPC

( )

( ( ) ( )) ( )( ) ( ) ( )

( ) ( ) 1 ( ) ( ) 1

( ) ( ) (1 ( )) ( ) ( ( ) ( )) ( )

( ) ( ) 1 ( ) ( ) 1

xy
VSC

x

y q

s

G s G s G s IG s G s G s I

I G s G s G s G s

I G s G s I G s G s G s G s G s I

G s G s G s G s

+ +
 

 + +   =    − − + 
 

+ +  

Y

1 4 2

x

y

V

V

 
 
 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3

 (A12) 

 

According to Fig. A, it can be seen that the conversion 

relationship between the rectangular coordinates and the polar 

coordinates of voltage/current in the xy frame is: 

 

cos , cos

sin , sin

x x

y y

V V I I

V V I I

 

 

= =


= =
               (A13) 

 

Finally, linearize (A13) and combine with (A12), the dynamic 

equation of the converter in the polar coordinates can be 

obtained: 

 

1( ) ( ) ( )xy

VSC

I V
T s T

I V
 

 

−
    

=   
    

Y                             (A14) 

 

where, 
cos sin

( )
sin cos

T
 


 

− 
=  
 

, = or = . 
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If the xy frame is chosen so that the steady-state voltage V 

coincides with the x-axis, then PLL 0 = = . Therefore, under unit 

power factor, the admittance matrix YVSC(s) of the converter in 

polar coordinates is shown below: 

 

g1

g4

( )VSC s

YI V

YI V 

     
=     

     
Y

1 4 2 43

  (A15) 

 

where, 
VF 1 APC d0

g1

I APC d0

VF d0 PLL RPC PLL I d0
g4

I RPC d0 I RPC d0

( ) ( ) ( )
( )

( ) ( ) 1

( )(1 ( )) ( ( ) ( )) ( )
( ) =

( ) ( ) 1 ( ) ( ) 1

G s G s G s I
Y s

G s G s V

G s V G s G s G s G s I
Y s

G s G s V G s G s V

+
= +


− + −

 + +

. 

 

Appendix B 
 

 

The return deference matrix of homogeneous multi-converter 

system in [22] is shown below. 

 

( ) ( )sys grid gs s= +Y Y Y               (B1) 

 

where 

 
( ) ( )

( )
( ) ( )

grid

s s
s

s s

 

 

 
=   

− 
Y B  (B2) 

( )

( )
g1

g4

g

Y s

Y s

 
=   

 
Y I  (B3) 

When rearrange the matrix elements, the return deference matrix 

of heterogeneous multi-converter system is obtained as follows. 

 

g1

g4

( ) ( )
det( ) det

( ) ( )
sys

s s

s s

 

 

    
= +     −   

Y B B
Y

Y B B
 (B4) 

 

According to Fig. 2, except for the phase loop element Yg(2,2)(s) 

represented in the lower right corner, the amplitudes of the other 

three elements in the sub/supersynchronous oscillation frequency 

band (10Hz~100Hz) are less than 0 dB, so these three elements 
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can be ignored (i.e. Yg1 can be ignored). Hence, the system 

frequency domain admittance matrix Ysys of the multi-converter 

system can be obtained by: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
g1

sys

g4 g4

s s s s

s s s s

   

   

+   
 =   

− + − +   

Y B B B B
Y

B Y B B Y B
           (B5) 

 

 

Appendix C 

 

A detailed switch model of a double-converter system containing 

switches and three-phase circuits is built through 

Matlab/Simulink. The parameters of the double-converter system 

are shown in Table 2. The three-phase terminal voltages of VSC1 

and VSC2 are demonstrated in Fig. B and Fig. C, respectively. 

 
Figure B: Three-phase terminal voltage of VSC1. 
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Figure C: Three-phase terminal voltage of VSC2. 
 


