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Abstract 
 

Healthcare 4.0 addresses modernization and digital 

transformation challenges, such as home-based care and 

precision treatments, by leveraging advanced technologies to 

enhance accessibility and efficiency. Semantic technologies, 

particularly knowledge graphs (KGs), have proven instrumental 

in representing interconnected medical data and improving 

clinical decision-support systems. We previously introduced a 

semantic framework to assist medical experts during patient 

interactions. Operating iteratively, the framework prompts 

medical experts with relevant questions based on patient input, 

progressing toward accurate diagnoses in time-constrained 

settings. It comprises two components: (a) a KG representing 

symptoms, diseases, and their relationships, and (b) algorithms 

that generate questions and prioritize hypotheses—a ranked list 

of symptom–disease pairs. An earlier extension enriched the KG 

with a symptom ontology, incorporating hierarchical structures 

and inheritance relationships to improve accuracy and question-

generation capabilities. This paper further extends the framework 

by introducing strategies tailored to specific medical domains. 

Strategies integrate domain-specific knowledge and algorithms, 

refining decision making while maintaining the iterative nature 

of expert–patient interactions. We demonstrate this approach 
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using an emergency medicine case study, focusing on life-

threatening conditions. The KG is enriched with attributes 

tailored to emergency contexts and supported by dedicated 

algorithms. Boolean rules attached to graph edges evaluate to 

TRUE or FALSE at runtime based on patient-specific data. 

These enhancements optimize decision making by embedding 

domain-specific goal-oriented knowledge and inference 

processes, providing a scalable and adaptable solution for 

diverse medical contexts. 

 

Keywords 
 

Knowledge Graph; Semantic Reasoning; Medical Diagnostic; 

Decision-Support Systems; Semantic Technology 

 

1. Introduction 
 

Significant challenges arising from healthcare modernization and 

digital transformation, such as adopting home-based care, 

precision treatments, and personalized or remote drug delivery 

systems, are being addressed through Healthcare 4.0 [1]. This 

paradigm represents a shift toward innovative solutions that 

leverage advanced technologies to improve healthcare 

accessibility and efficiency. In this context, the role of semantic 

technologies is powered by large datasets and algorithms that 

warrant examination. Semantic technologies highlight the 

growing adoption of knowledge graphs (KGs)—graph-based 

data models valued for their ability to represent intricate 

knowledge structures [2]. KGs are particularly suited for 

representing medical data and enhancing the clinical decision-

support capabilities of healthcare systems. For instance, 

Rotmensch et al. [3] demonstrated the potential of health KGs 

constructed from electronic medical records to improve the 

organization of complex patient information and enable more 

accurate diagnostic inferences. 

 

Using KGs is aligned with the framework introduced in our 

previous works [4,5], designed to assist medical experts in 

decision making during patient encounters where a medical issue 

is presented. The framework is iterative by nature, consisting of 



Top 10 Contributions in Applied Sciences 

4                                                                      www.academicreads.com 

a series of iterations. In each iteration, the medical expert is 

prompted with a question (symptom), and the patient responds. 

Each iteration brings the expert closer to making a decision, 

ultimately leading to a diagnosis for the issue raised by the 

patient. The framework operates within a setting that includes, 

among other constraints, time limitations. This poses the 

challenge of helping the medical expert refine their decision 

within a restricted timeframe. 

 

Our designed and developed semantic technology-based 

framework comprises two main components: (a) a KG used to 

represent medical data and the relationships between various 

elements [6]. Specifically, symptoms and diseases were 

represented as nodes, and directed edges linked symptom nodes 

to disease nodes when a symptom characterized a disease; (b) a 

set of dedicated algorithms designed to infer questions for the 

medical expert based on the knowledge captured in the KG and 

the information provided by the patient during the encounter. At 

the end of the encounter, the framework’s final output is a 

prioritized list of hypotheses based on the likelihood of accurate 

diagnosis. Each hypothesis consists of a symptom and a disease. 

In [5], we enriched the KG by extending it with a symptom 

ontology [7]. This extension included the addition of new 

symptoms and hierarchical structures, such that the original 

symptoms in the KG were augmented with hierarchical 

constructs rooted in them. These structures incorporated new 

ontological symptoms, with the relationships within the structure 

defined as ISA edges. This enrichment also required an 

extension of the algorithms to support inheritance relationships. 

This enhancement increased the framework’s ability to provide 

more questions to the medical expert and refine the prioritized 

hypotheses list. In [5], we presented a full implementation of the 

framework in Python, including evaluation tests to assess the 

quality of its outputs. 

 

Our generic framework provides a general solution for the 

iterative nature of patient–expert interactions. In the current 

work, we advance the framework by addressing specific medical 

domains. The iterative nature persists in most domains, but 
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domain-specific information can be added to enable the medical 

expert to make more accurate decisions. 

 

To this end, we reinterpreted the term Strategy to describe an 

extension of the framework incorporating a layer of knowledge 

and algorithms tailored to a specific medical domain. The 

following are sample strategies: 

 

• Healthy lifestyle strategy promotes long-term wellness by 

incorporating attributes related to nutrition, physical activity, 

and preventive measures into the KG. By leveraging patient-

specific data, the framework can suggest personalized 

recommendations associated with the patient’s health goals 

and lifestyle. 

• Mental Health Support Strategy integrates mental health 

assessments and decision-making tools to assist in 

diagnosing and treating psychological conditions. 

• Emergency strategy prioritizes rapid and accurate decision 

making under time-critical conditions. It incorporates 

attributes such as symptom severity into the KG, enabling 

medical experts to identify potential diagnoses quickly. 

 

Each proposed strategy retains the iterative nature of the medical 

decision-making process while incorporating distinct goals and 

additional knowledge layers. These layers are implemented by 

adding new attributes to the KG nodes and edges, supported by 

algorithms that refine the framework’s generated hypotheses. 

The structure of the hypotheses may also change according to the 

needs of the specific medical domain. 

 

This paper presents the concept of strategy through a case study 

of emergency strategy. This strategy simulates an emergency 

room environment, focusing on promptly identifying emergency 

conditions despite time-constrained communication between 

patients and medical experts. The goal of this strategy is to 

identify life-threatening diseases and save lives. 

 

To determine the essential characteristics of the strategy, we 

conducted interviews with two physicians, which revealed the 

following key insights: (1) physicians often identify additional 
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symptoms during physical examinations or through abnormal 

vital signs not initially reported by patients; (2) personal patient 

data, such as age, gender, pre-existing conditions, and 

medications, play a critical role in the diagnostic process; (3) 

diseases are categorized as life-threatening or non-life-

threatening based on symptoms and patient information; and (4) 

the strategy prioritizes the prompt elimination of life-threatening 

conditions as a primary objective. 

 

This enhancement enriches the KG with semantic conditional 

edges reflecting patient-specific indicators, such as age, gender, 

and pre-existing conditions, while refining the framework’s 

algorithms to prioritize excluding life-threatening diseases. The 

hypotheses are generated through an inference process that 

identifies symptoms to either confirm or rule out critical 

conditions. Simulating an emergency room environment, this 

enhancement enables the framework to focus on rapidly 

identifying life-threatening conditions in time-sensitive settings. 

Building on these findings, the architecture of our framework has 

been enhanced to provide medical experts with a prioritized list 

of hypotheses focusing on life-threatening diseases. This 

enhancement involved enriching the KG with conditional edges 

that incorporate patient-specific indicators, such as age, gender, 

and pre-existing conditions, and refining the framework’s 

algorithms to emphasize the exclusion of life-threatening 

conditions. The hypotheses are generated through an inference 

process to identify symptoms that confirm or rule out critical 

diseases. By simulating emergency room scenarios, this 

enhancement enables the framework to prioritize the rapid 

identification of critical conditions in time-sensitive settings. 

 

This strategy-based approach is both innovative and practical. 

By preserving the core iterative process and integrating domain-

specific strategies, the framework remains adaptable across 

diverse medical domains while retaining its foundational 

strengths. The simplicity of the KG structure, combined with its 

ability to incorporate new attributes, enhances both the 

scalability and flexibility. 
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The paper is organized as follows: Section 2 discusses 

knowledge representation and reviews studies that utilize KGs 

for healthcare applications. Section 3 details our framework, 

and Section 4 describes the framework extension via tailored 

strategies for enhanced decision making. Section 5 describes in 

detail the case study of emergency strategy. Finally, Section 

6 concludes with a summary of contributions and suggestions for 

future work. 

 

2. Background and Prior Work 
 

Knowledge representation (KR) plays a pivotal role in enabling 

entities to predict outcomes, form structured perceptions of the 

world, establish foundations for intelligent reasoning, facilitate 

efficient computations, and serve as a medium for human 

expression [8]. KR methods are extensively applied across 

diverse domains, including expert systems, artificial intelligence, 

and robotics. Many applications in these areas rely on KR 

methodologies for representation and reasoning [9] and are 

applied in various fields such as education, science, engineering, 

finance, and healthcare [10]. 

 

Prominent KR methodologies include knowledge graphs, 

ontologies, and semantic technologies. Knowledge graphs 

(KGs), also referred to as semantic graphs, encode relationships 

between entities within graph structures, providing semantically 

structured data that support various applications, such as 

question answering, recommendation systems [11], and 

information retrieval [12]. KGs are instrumental in advancing 

intelligent systems by enabling machines to process and utilize 

interconnected information effectively. Ontologies, defined as 

explicit machine-interpretable specifications of 

conceptualizations, describe entities within a domain, their 

attributes, and their interrelationships [13]. They provide a 

shared vocabulary for humans and machines, facilitating 

consistent information sharing, systematic analysis, and reuse of 

domain knowledge [14]. Ontologies are usually formulated in 

two main languages: RDF and OWL [15]. Semantic technologies 

extract meaning from data by integrating and managing diverse 

information streams. With ontologies often represented as 
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graphs, advanced graph algorithms can infer insights by 

modeling domain knowledge and data relationships. 

 

In the context of healthcare, KR methods such as KGs and 

ontologies play a crucial role in representing complex medical 

relationships across multiple dimensions, including disease 

diagnosis, monitoring, and treatment, enabling precise decision 

making and inference within clinical frameworks [16]. Recent 

advancements in KR include integrating machine learning 

techniques with KGs, enabling dynamic updates, and improving 

inference capabilities. Additionally, KR serves as a cornerstone 

for explainable AI [17] by offering interpretable domain 

knowledge models. 

 

Organizing medical knowledge with KR methodologies defines 

rules and relationships across various contexts, providing 

essential decision support in monitoring scenarios. This approach 

helps medical staff interpret data effectively, leading to informed 

decisions that enhance patient care [18]. In addition, diagnosing 

diseases relies on identifying specific illnesses through 

established classifications, supporting accurate and reliable 

diagnoses [19]. A methodology for constructing a graph of 

disease–symptom relationships, using data from 273 K patient 

records, is presented in [3]. 

 

Recent advancements in clinical decision-support systems have 

increasingly utilized KGs to improve diagnostic accuracy and 

deliver personalized care. For instance, constructing and 

evaluating causal KGs for diabetic nephropathy has enhanced 

clinical decision making by modeling intricate causal 

relationships within patient data [20]. Similarly, integrating KGs 

with large language models has been investigated to support 

real-time emergency decision making in critical care scenarios 

[21]. 

 

Clinical KGs incorporating proteomics data have also 

demonstrated potential in personalized medicine, enabling more 

precise diagnostics and customized treatments [22]. Moreover, 

enriching KGs with clinical narratives through natural language 

processing (NLP), named entity recognition (NER), and 
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biomedical ontologies has improved the extraction and 

organization of critical healthcare information [23]. 

 

These advancements highlight the transformative role of KGs in 

augmenting clinical decision-support systems, especially when 

combined with semantic technologies and patient-specific data. 

The authors of [3] focused on the automated construction of a 

KG from vast datasets, while the authors of [20,21] focused on 

using KGs for improved data modeling and real-time 

application, and those of [22,23] focused on enhancing data 

extraction and representation for improved personalization and 

organization. 

 

Our research focuses on leveraging the KG to assist medical 

experts in refining and expediting their iterative decision-making 

process with patients. This paper introduces a novel approach to 

extend our framework by incorporating domain-specific 

knowledge into the KG. This is achieved by enriching the nodes 

and edges with attributes tailored to specific medical contexts 

and supported by dedicated algorithms. Some attributes are 

defined as Boolean rules attached to the graph’s edges, which 

evaluate as TRUE or FALSE at runtime based on the patient’s 

data. 

 

3. The Framework 
 

The framework developed in our previous studies [4,5] supports 

collaborative decision making between a medical expert and a 

patient through an iterative exchange of questions and answers 

about symptoms and potential diseases. It assists the expert by 

suggesting relevant questions (e.g., “Does the patient exhibit a 

particular symptom?”) and refining the decision-making process 

based on the patient’s responses. The output is a ranked list of 

hypotheses, each linking a specific disease to a related symptom. 

Thus, symptoms, diseases, and hypotheses form the framework’s 

core elements. 

 

The framework employs a knowledge graph (KG), which has 

become increasingly popular due to its ability to naturally 

represent interconnected data [24,25]. The KG’s framework 
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consists of nodes representing symptoms and diseases, with 

edges (labeled symptomOf) linking symptoms to diseases. 

Leveraging the KG and the patient’s initial input, an inference 

process—driven by interactive algorithms—generates context-

specific questions for the medical expert. 

 

The framework operates in two stages: (1) a pre-processing 

phase during initialization and (2) a dynamic processing phase 

activated with each new patient interaction. These stages are 

described in the following sections. 

 

3.1. Pre-Processing Phase 

 

This phase involves constructing the framework’s KG, including 

creating nodes for symptoms and diseases and edges linking 

symptoms to diseases. In our previous studies [4], we 

demonstrated the KG’s construction using Neo4j Graph 

Database, Version 5 (https://neo4j.com/, accessed on 8 October 

2024), with raw data from Kaggle [26]. The dataset comprises 

patient records, each associated with a diagnosed disease and 

reported symptoms, covering 41 diseases and 130 unique 

symptoms. While some symptoms are linked to a single disease, 

others are associated with multiple conditions. 

 

Additionally, this phase enriches the KG by incorporating 

hierarchical structures. These structures consist of a root 

symptom node (a KG symptom) and additional ontology 

symptom nodes connected via ISA edges [5]. Semantic 

knowledge from the SYMP ontology [7] was used to create these 

structures, enhancing the KG’s capacity to generate a broader 

range of recommended questions for medical experts [27]. 

 

The final step in this phase involves identifying clusters of 

diseases—called communities—that share similar symptoms. For 

this, we applied the Louvain hierarchical clustering algorithm 

[28] to the KG, a process defined as “Algorithm 1” in [4]. 

 

Figure 1 presents a Neo4j screenshot illustrating a subgraph of 

the enriched KG. The example highlights the cough KG 

symptom node linked to the GERD disease node via 
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a symptomOf edge. Additionally, cough serves as the root of a 

hierarchical structure comprising ontology symptom nodes 

(e.g., dry cough), each connected to its parent node via 

an ISA edge. 

 

 
 
Figure 1: An example of integrating a hierarchical tree of symptoms into the 

KG. Disease nodes are represented in yellow, KG symptom nodes in gray, and 

ontology nodes in red. 

 

3.2. Processing Phase 
 

The processing phase begins whenever a new interaction 

between a medical expert and a patient starts, with the patient 

presenting evidence symptoms. During this interaction (named 

“Algorithm 2” in [4]), the framework executes inference 

algorithms that utilize the identified communities to determine 

which diseases are compatible with the patient’s symptoms. 

Specifically, Algorithm 2 identifies the most probable diseases 

that align with the evidence symptoms. Next, “Algorithm 3” [4] 

iteratively, as needed, suggests to the medical expert questions 

(i.e., symptoms) that point toward the community most likely to 

include the patient’s disease. Finally, the processing phase 

concludes with “Algorithm 4” [4], which infers and outputs a 

ranked list of hypotheses (recall, ordered pairs of a disease and 

an indicative symptom) that the patient might have. 

 

The entire framework was implemented in Python, and we 

conducted a series of tests to evaluate its output and 

effectiveness [5]. 
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4. Extending the Framework: Tailored 

Strategies for Enhanced Decision Making 
 

KR methodologies are essential for creating structured 

frameworks to organize and represent medical data. They enable 

healthcare professionals to effectively store and leverage critical 

information, such as risk factors, treatments, symptoms, and 

other patient-specific details [29]. 

 

Our generic framework addresses the iterative nature of patient–

expert interactions across various medical domains. To enhance 

its precision, we introduce the concept of a strategy—a targeted 

extension designed to address specific medical decision-making 

needs and enable more accurate decisions in specialized medical 

contexts. 

 

Strategies tailor the iterative framework to specific healthcare 

scenarios while preserving its core structure. Each strategy is 

defined by its goal and a set of characteristics, formulated as KG 

attributes and algorithm-based rules. 

 

The modularity of the KG model simplifies the integration of 

new strategies. The KG, composed of nodes and edges, allows 

attributes to be easily appended or adjusted. This flexibility 

enables the KG to incorporate domain-specific attributes such as 

patient-specific factors, risk thresholds, or clinical priorities. An 

adapted set of algorithms further supports each strategy to ensure 

effective implementation. 

 

In addition to the strategies proposed in the Introduction, other 

potential strategies include the following: 

 

• Chronic disease management: focused on conditions like 

diabetes or hypertension, incorporating attributes for long-

term monitoring and personalized treatment plans. 

• Rehabilitation management: supporting post-surgical or 

injury recovery by tracking progress and suggesting therapy 

adjustments. 
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Integrating tailored strategies transforms the framework into a 

robust adaptable tool for medical decision making across diverse 

healthcare scenarios. This modularity enables 

 

1. Targeted interventions: addressing specific healthcare 

challenges to enhance diagnostic precision and improve 

patient outcomes. 

2. Personalized care: incorporating patient-specific attributes to 

generate customized contextually relevant hypotheses. 

3. Scalability: facilitating seamless integration of new 

strategies without disrupting the fundamental framework. 

 

Section 5 illustrates the strategy concept through a detailed case 

study of the emergency strategy. 

 

5. The Emergency Strategy Case Study: Needs 

Analysis and Formalization 
 

5.1. Motivation for the Emergency Strategy 
 

The emergency strategy aims to prioritize identifying life-

threatening conditions within time constraints. To define the 

characteristics of this strategy, we interviewed two physicians 

and gathered the following key insights: 

 

1. Physicians identify additional symptoms beyond those 

patients report, often through physical examinations or 

abnormal vital signs (e.g., abnormal blood pressure). 

2. Personal patient information—such as age, gender, pre-

existing conditions, and medications—is critical to the 

diagnostic process. 

3. Diseases, based on symptoms and patient data, are classified 

into two categories: life-threatening and non-life-threatening. 

4. The strategy’s primary objective is first to rule out life-

threatening conditions. 

 

The following subsections detail the characteristics of the 

strategy and its integration into our framework, including 

additional KG representations and new algorithms. 
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5.2. Emergency Strategy Overview 
 

To implement the insights gathered, we performed two primary 

actions: (a) enhancing the KG to incorporate emergency-specific 

attributes and (b) modifying the processing phase to align with 

the emergency strategy. 

 

5.2.1. KG Enhancement 
 

The KG enhancement process consists of two key steps, 

executed during the pre-processing phase: 

 

Step A: Adding a risk attribute to diseases: 

A Boolean attribute named risk? is introduced for each disease in 

the KG, indicating whether the disease requires immediate 

attention to rule out life-threatening conditions. 

 

Step B: Incorporating patient indicators as Boolean rules: 

Three key indicators—age, gender, and pre-existing 

conditions—are integrated into the KG. To capture the influence 

of these indicators on life-threatening conditions, a new edge 

type, conditional SymptomOf edges, is defined. These edges 

include an attribute formulated as a logical rule involving one or 

more indicators connected with AND/OR operators. 

 

For instance, if a symptom, s1, indicates a life-threatening 

disease, d1, in male patients over the age of 60, the rule 

governing the relationship between s1 and d1 would be “age > 

60 AND gender = M”. This rule is represented using a Boolean 

function, where if the function evaluates to true, the edge s1->d1 

exists; otherwise, it does not. This implies that the edge is 

conditional, hence the term conditional edge. Refer to Figure 

2 for the enhanced knowledge graph, which includes rules 

defining the conditional SymptomOf edges. 
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Figure 2: The enhanced knowledge graph. 

 

Step C: Categorizing SymptomOf edges: 

The KG distinguishes between two types of edges: 

 

• Unconditional edges represent static relationships universally 

applicable to all patients. 

• Conditional edges reflect relationships dependent on patient-

specific indicators, dynamically included in the patient’s 

graph during runtime if the logical conditions are met. 

 

This dynamic adjustment enables the KG to adapt to individual 

patient profiles, enhancing precision and personalization in the 

diagnostic process. 

 

Figure 2 illustrates an enhanced KG including two diseases 

(d2, d5) marked as high-risk and conditional edges (e.g., the 

edge s5 -> d3, defined by the rule age < 2). 

 

5.2.2. Processing Phase Enhancement 
 

The processing phase has been expanded with new algorithms to 

support the emergency strategy. The input process now includes 

a broader range of evidence, encompassing not only symptoms 

reported by the patient but also vital signs (e.g., blood pressure) 

and additional symptoms identified by the medical expert during 

the examination (e.g., rigid abdomen). These inputs, along with 
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the patient’s indicators—specifically age, gender, and pre-

existing conditions—are incorporated into the patients’ KG 

instance and categorized as evidence symptoms. 

 

A new algorithm performs logical inference during runtime to 

handle the conditional edges introduced in the KG (See 

“Algorithm A” in Section 5.3.3). For each conditional edge, if its 

logical rule evaluates to true, it is dynamically added to the 

patient’s KG instance, ensuring that it reflects the patient’s 

specific profile. The output of this stage is named personalized 

subgraph or PSG in short (see Section 5.3.3 for more details). 

 

With the patient’s PSG prepared, the disease identification and 

community inference processes proceed similarly to the original 

framework, with a slight modification to Algorithms 2 and 3: 

diseases are now prioritized in two stages: First, diseases marked 

with risk? = true are ranked, followed by all other diseases (see 

“Algorithm 2” in Section 5.3.3). Community rankings are 

subsequently determined based on disease scores, calculated by 

the number of evidence symptoms linked to a disease, including 

conditional edges evaluated as true (see “Algorithm 3” 

in Section 5.3.3). 

 

Algorithm 4 remains as described in [4,5]. The framework 

identifies a symptom for each community to confirm or rule out 

a life-threatening condition. The inference process concludes 

with a ranked list of hypotheses, prioritizing any identified life-

threatening diseases at the top. 

 

Figure 3 illustrates the stages of the processing phase within the 

emergency strategy. 
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Figure 3: The interactions within the framework among the patient, the 

medical expert, and the KG during the processing phase in the emergency 

strategy. 

 

5.3. Formalizing the Emergency Strategy 
 

In this section, we provide a formal description of how the 

strategy aligns with the KG, which includes the refined KG 

process and is supported by the algorithms. 
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5.3.1. Knowledge Graph and Pre-Processing 

Formalizing 
 

Refining the KG includes two main steps, as explained earlier. 

Both steps are implemented in the framework’s pre-processing 

phase, as they do not involve the patient and remain consistent 

across patients. 

 

A: Identify the diseases with high risk and add a Boolean 

attribute that recognizes them in the graph: 

 

Let D be the set of nodes representing the diseases in the KG. 

For every disease d ∈ D, add a Boolean attribute named risk? 

with the default value false. 
 

Let 𝐷𝑟𝑖𝑠𝑘 ⊆ 𝐷Be the set of diseases with high risk. For each 

disease 𝑑 ∈ 𝐷𝑟𝑖𝑠𝑘, set risk? to true. 
 

B: Incorporate the indicators of age, gender, and pre-existing 

conditions into the KG: This step translates a set of rules R into 

conditional edges 𝐸𝐶 EC in the processing step. Each rule 𝑟 ∈ 𝑅 

represented by a tuple  〈𝑠, 𝑑, 𝑓𝑆,𝑑(𝑖𝑎𝑔𝑒 , 𝑖𝑔, 𝑖𝑝𝑟𝑒)〉 

where s is a symptom, d is a disease, and 𝑓𝑠,𝑑  is a Boolean 

function that receives three personal indicators and 

returns true if s indicates d according to the patient indicators.  

 

The set of conditional edges 𝐸𝐶EC are defined as follows: 
 

𝐸𝐶 = {(𝑠, 𝑑)|𝑓𝑠,𝑑(𝑖𝑎𝑔𝑒 , 𝑖𝑔, 𝑖𝑝𝑟𝑒) = 𝑡𝑟𝑢𝑒}. These edges will be 

evaluated during the processing step when a patient arrives. 
 

5.3.2. Framework-Specific Terminology 
 

Table 1 presents the terminology that we use to describe the 

algorithms. 
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Table 1: The extended algorithms’ terminology. 

 
Term Definition 

D The set of disease nodes 

𝑫𝒓𝒊𝒔𝒌 Let 𝑫𝒓𝒊𝒔𝒌 ⊆ 𝑫 be the set of high-risk diseases 

S The set of symptom nodes 

ES The set of evidence symptoms (i.e., the symptoms 

indicated by the patient) 

PI The patient’s personalized indicators 

C The set of communities 

|c| The size of a single community 𝑐 ∈ 𝐶  

Defined by the number of diseases that belong to c 

Risk(c) Defined by the number of diseases in 𝑫𝒓𝒊𝒔𝒌+ the 

number of evidence symptoms indicating a disease 

in 𝑫𝒓𝒊𝒔𝒌 

LinD(c) The local-in-degree of a given 𝑐 ∈ 𝐶. 

Defined by the number of edges that point to diseases 

of c, by ES; hence, it is the sum of 𝑅𝑐(s,c), for each 𝑠 ∈ 
𝐸𝑆 and the given 𝑐 

PD’s communities The set of communities 𝑐 ∈ 𝐶 with a positive LinD(c), 

hence, a community in which at least one edge 

from 𝑠∈𝐸𝑆 points to c 

𝑅𝑑(d) The disease’s symptoms rank 

Defined by the number of symptoms the patient has 

that indicate D 

𝑅𝑠(s,c) Rc(s,c) – (∑ 𝑅𝑐(𝑠, 𝑐′)𝑐≠𝑐′∈𝑃𝐷   
Defined by the number of edges from symptom s to 

community c minus the number of edges from s to 

some other community c’ 

 The outcome indicates how this symptom 

characterizes c 

Cs Community symptom 

Defines a symptom indicating a high number of 

diseases in the community c and a low number out 

of c; hence, given a community c, it is the symptom s 

with the highest 𝑅𝑠(s,c) 

SCM symptom community matrix (SCM) represents the 

associations between groups of diseases and the 

various symptoms (see [4] for a formal definition) 

 

5.3.3. The Refined Framework Algorithms 
 

We describe the additional algorithms developed in our 

framework to support the emergency strategy. 
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Algorithm 1 builds the personalized subgraph from KG by 

adding the patient’s personal information (the indicators). 

Algorithm 2 incorporates the patient’s symptoms into the 

personalized sub-graph and uses inference to generate a ranked 

list of potential diseases. This list is then used as input for 

Algorithm 3, which identifies the most probable community and 

a relevant question, and for Algorithm 4 in [4,5], which 

generates a set of hypotheses ranked by their urgency. Recall 

that each hypothesis is a pair consisting of a disease and a 

symptom indicating it. 

 

Algorithm 1: personalized sub-graph 

Input: knowledge graph 𝐾𝐺 = (𝐷⋃𝑆, 𝐸), PI, ES, R  

Output: personalized sub-graph PKG 

Algorithm: 

    0. 

Let PKG be KG. 

    1. 

For every 𝑠 ∈ 𝐸𝑆: 
  a. 

For every 𝑟 ∈ 𝑅 that contains s, that is 𝑟 = 〈𝑠, 𝑑, 𝑓𝑠,𝑑〉: 
  b. 

If 𝑓𝑠,𝑑(PI) = 𝑡𝑟𝑢𝑒, add the edge (𝑠,𝑑) to PKG. 
    2. 

Return PKG. 

Algorithm 2: identify possible diseases 

Input: PKG, ES, C 

Output: possible diseases, sorted according to their risk 

Algorithm: 

  1. Let 𝑃𝐷 ⟵{}. 

 2. Let 𝐶′ ⊆ 𝐶 be the set of communities having positive LinD. 

 3. Sort 𝐶′in a non-decreasing order according to their Risk 

(primary) and then according to their LinD (secondary). 
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 3.1. Let c be the community in the order: 

 3.1.1 Go over the diseases in c. 

First, go over the diseases d with risk?==true. Sort them 

according to their 𝑅𝑑(𝑑) (in a decreasing order) and add them 

in that order into PD. 

 Then, add the rest of the diseases in c, sorted (in a decreasing 

order) according to their 𝑅𝑑(𝑑).  

 4. Return PD. 

Algorithm 3: find the most probable community 

Input: PD 

Output: cs and the community it indicates (presented as a 

question to the domain expert), or null if it does not exist. 

Algorithm: 

 1.Let C be the list of PD’s communities, sorted according to 

the order of PD. 

 2. Let 𝑐 ∈ 𝐶 be the current community in the order. 

 3. For every symptom 𝑠 ∉ 𝐸𝑆 in 𝑆𝐶𝑀(_, 𝑐), 

calculate RS(s, c). 

 4.Let 𝑠′=𝑎𝑟𝑔𝑚𝑎𝑥𝑠′∉𝐸𝑆𝑅𝑆(𝑠’, 𝑐) > 0. If RS(s’, c). > 0, 

return s’ (i.e., cs) and c. 

 Otherwise, return to step 2. 

 5. Return null. 

 

5.4. Simplified Example 
 

We illustrate two distinct scenarios involving patients who 

exhibit the same symptoms (s1, s5, s9, and s10) but differ in 

their indicators, such as age and medical history. These 

differences lead to unique results in the generated knowledge 

graphs. 
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Scenario 1: A 75-year-old man The first scenario involves a 

75-year-old man with no prior health conditions. Despite having 

the same symptoms as the second patient, his age and lack of 

medical history significantly impact the resulting knowledge 

graph. The patient’s age serves as a key personal indicator, 

influencing the identification of possible diseases. After 

processing this information, the resulting graph, referred to as 

PKG1, is generated. PKG1 reflects the relationships between the 

symptoms and potential conditions most relevant to this patient’s 

age group. Figure 4A shows this graph, providing a visual 

representation of how the patient’s characteristics, like age, 

affect the input graph for the analysis. 

 

 
 
Figure 4: (A) PKG1—the graph for the 75-year-old man, (B) PKG2—the 

graph for the 9-month-old baby. 

 

Scenario 2: A 9-month-old baby The second scenario involves 

a 9-month-old baby, also with no prior health conditions. While 

this patient shares the same symptoms (s1, s5, s9, and s10) as the 

75-year-old man, the baby’s age significantly alters the resulting 

knowledge graph. In this case, age is a critical factor that 

redefines the potential conditions and diseases linked to the 

symptoms. The resulting graph, PKG2, is generated after 

inputting the baby’s indicators. PKG2 highlights the diseases and 

medical considerations that are more relevant to infants, 

reflecting the distinct medical risks associated with early 

childhood. Figure 4B presents this graph, showing how the 

patient’s age impacts the analysis and identifying relevant health 

concerns. 
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In both scenarios, despite the identical symptoms, the personal 

indicators—age and health history—lead to different 

interpretations and analyses, as evidenced by the differing graphs 

(PKG1 and PKG2). These graphs demonstrate the importance of 

considering individual patient characteristics when diagnosing 

and identifying potential conditions. 

 

It is important to note that these two scenarios produce different 

graphs, meaning the algorithms process different inputs and 

generate distinct hypotheses for each patient. This variation in 

the inputs directly affects the communities and risks that are 

evaluated, ultimately influencing the hypotheses generated by 

the algorithms. 

 

In the first scenario, the 75-year-old man with no prior health 

conditions, the graph (PKG1) only includes the communities C1 

and C3. The algorithm analyzes these two communities and 

calculates the associated risks. The risk levels of each 

community—denoted as Risk(C1) and Risk(C3)—are compared. 

Since Risk(C3) ≥ Risk(C1), the algorithm determines that the 

disease most likely associated with community C3 should be 

prioritized for exclusion. In this case, disease d5 is ruled out 

first. 

 

In the second scenario, involving the 9-month-old baby, the 

graph (PKG2) includes a broader range of communities, as the 

personal indicator—age—results in a wider set of communities 

being considered. The algorithm considers all relevant 

communities: C1, C2, and C3. After evaluating the risks 

associated with each community, the algorithm compares them 

and finds that Risk(C1) ≥ Risk(C2) = Risk(C3). Since Risk(C1) 

≥ Risk(C2), the disease associated with community C1 is ruled 

out first. In this case, disease d2 is the first to be excluded. 

 

Key differences in the scenarios: 

 

Graph construction: The primary difference between the two 

scenarios is the composition of the graph. In the first scenario, 

only two communities (C1 and C3) are involved, while in the 

second scenario, all communities are considered. 



Top 10 Contributions in Applied Sciences 

24                                                                      www.academicreads.com 

 

Risk calculation: The risk values of each community differ in 

the two scenarios due to the varying personal indicators (age, 

health history). These differences lead to distinct risk 

assessments, influencing which diseases are ruled out first. 

 

Disease exclusion: The first disease to be excluded also differs 

between the two scenarios. In the first scenario, disease d5 is 

ruled out first, while disease d2 is excluded first in the second 

scenario. This is a direct result of the distinct graphs and the 

unique risk levels for each scenario. 

 

In summary, while the symptoms are identical in both scenarios, 

the differing personal indicators (age, health history) lead to 

different graphs, which in turn cause the algorithms to process 

distinct inputs and generate unique hypotheses. 

 

6. Discussion and Future Work 
 

Knowledge representation and reasoning techniques assist 

doctors in decision making and inferring new information about 

diseases from previously represented data [30]. 

 

The current work presented in this paper introduces a new 

concept, which we have termed “strategy.” A strategy extends 

the existing framework designed to address specific needs in 

various medical domains. On the one hand, the strategy 

continues to implement the framework’s core functionality, 

which supports the iterative nature of interactions between the 

patient and the medical expert. On the other hand, it enables 

adding a layer representing a specific medical domain through 

attributes added to the KG, supported by dedicated algorithms. 

In the case study we presented, some attributes are formulated as 

Boolean rules attached to the graph’s edges. During runtime, an 

instance of the KG is constructed for the patient interacting with 

the medical expert. Each edge associated with a Boolean rule 

undergoes evaluation, yielding either TRUE or FALSE based on 

the patient’s data. If the rule evaluates to TRUE, the edge is 

included in the patient’s graph; otherwise, it is excluded. 
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Building upon the foundational framework, the strategy concept 

extends its capabilities to address domain-specific needs in 

diverse medical contexts. Strategies leverage the KG’s flexibility 

to introduce specialized attributes and relationships tailored to 

specific healthcare challenges. Each strategy is designed to 

enhance the framework’s capacity for precise context-aware 

decision support while preserving the iterative nature of the 

decision-making process. 

 

The emergency strategy is a case study focusing on rapidly 

identifying life-threatening diseases. Building on the work by 

Horng et al. [31], who demonstrated the effectiveness of 

machine learning in sepsis clinical decision support, our 

approach integrates an emergency strategy layer into the KG-

based decision-making framework. This enhancement prioritizes 

life-threatening conditions, improving decision-making 

efficiency and patient outcomes in urgent scenarios. 

 

We advanced clinical decision making by developing a KG 

enriched with conditional edges informed by patient-specific 

data, enabling real-time adaptation to individual profiles. 

Additionally, we refined existing algorithms to seamlessly 

incorporate the emergency strategy, creating a diagnostic process 

that is both precise and responsive to critical clinical demands. 

These advancements establish a more adaptable framework for 

emergency contexts, providing a strong foundation for future 

innovations in medical diagnostics. 

 

Future efforts will focus on validating the emergency strategy 

with real-world clinical data to assess its practical effectiveness 

in supporting healthcare professionals. Additionally, we plan to 

refine the logic for conditional edges by incorporating 

continuous data, enabling more granular inferences and 

improved diagnostic accuracy. 

 

Expanding on this work, we aim to integrate machine learning 

models capable of dynamically updating the KG with incoming 

data, enhancing the framework’s adaptability to evolving clinical 

practices and diverse patient populations. 

 



Top 10 Contributions in Applied Sciences 

26                                                                      www.academicreads.com 

The strategy concept offers potential for scalability across other 

medical domains requiring rapid and precise decision making, 

such as cardiology or oncology. Furthermore, addressing ethical 

considerations, such as mitigating bias and ensuring data 

privacy, will be a critical focus as we integrate machine learning 

into the framework. Collaborations with clinical practitioners 

and institutions will also play a pivotal role in co-developing and 

validating these innovations in real-world scenarios. 
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