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Abstract 
 

Generative artificial intelligence tools, such as Microsoft 

Copilot, are transforming the teaching of programming by 

providing real-time feedback and personalized assistance; 

however, their impact on learning, motivation, and cognitive 

absorption remains underexplored, particularly in university 

settings. This study evaluates the effectiveness of Microsoft 

Copilot compared to instructional videos in teaching web 

programming in PHP, implementing a quasi-experimental design 

with 71 industrial engineering students in Chile, divided into two 

groups: one using Microsoft Copilot and the other following 

instructional videos, with pre-and post-tests applied to measure 

knowledge acquisition while surveys based on the Hedonic-

Motivation System Adoption Model (HMSAM) assessed 
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cognitive absorption (enjoyment, control, immersion, curiosity) 

and technology acceptance (perceived usefulness, ease of use, 

and intention to adopt). The results show that, while both 

methods improved learning, students who used instructional 

videos achieved greater knowledge gains, higher levels of 

curiosity, and a stronger intention to continue using the 

technique, suggesting that instructional videos, by providing 

structured explanations and reducing cognitive load, may be 

more effective in the early stages of programming learning. In 

contrast, AI tools could be more beneficial in advanced stages 

where students require adaptive feedback, providing empirical 

evidence on the comparative effectiveness of AI-based and 

video-based instruction in teaching programming and 

highlighting the importance of balancing structured learning with 

AI-driven interactivity, with the recommendation that educators 

integrate both approaches to optimize the learning experience, 

using videos for initial instruction and AI tools for personalized 

support. 

 

Keywords 
 

Generative Artificial Intelligence; Programming education; 

Cognitive absorption; Technology adoption. 

 

1. Introduction 
1.1 Background 
 

In recent years, generative artificial intelligence (AI) tools, such 

as Microsoft Copilot, Google Gemini, and ChatGPT, have begun 

to significantly transform the educational landscape [1]. These 

technologies assist in solving complex problems and promote a 

more personalized and adaptive learning experience [2]. Tools 

like Microsoft Copilot have proven particularly useful in 

programming by offering real-time code suggestions, facilitating 

understanding concepts, and resolving errors [3]. However, their 

impact on student learning and motivation has yet to be 

sufficiently explored, especially within university educational 

contexts. 
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One of the main challenges in adopting technological systems in 

education is measuring the motivation and enjoyment that users 

experience when interacting with these tools. The theory of 

cognitive absorption suggests that immersion and enjoyment 

during technology use can significantly influence adoption and 

effective learning [4]. However, measuring these emotional and 

cognitive dimensions remains challenging, requiring validated 

instruments and rigorous methodological approaches [5]. In the 

case of generative AI tools, it is crucial to understand how they 

impact the learning experience and whether they generate 

positive emotional effects that enhance knowledge retention. 

 

Learning to program web systems, particularly in languages like 

PHP, represents a significant challenge for university students 

[6-8]. The complexity of the concepts, the need for logical skills, 

and the steep learning curve contribute to the difficulty [9]. 

Universities face the challenge of designing effective 

pedagogical strategies that enable students to overcome these 

barriers. Traditionally, instructional videos have been a common 

tool for teaching programming, but their effectiveness compared 

to more interactive methods, such as generative AI, has not yet 

been sufficiently studied [10]. 

 

In Latin America, research on the impact of AI tools in education 

is still in its early stages [11,12]. Students in this region exhibit 

levels of digital literacy that differ from those in Europe, Asia, 

and the United States, which may influence the adoption and 

effectiveness of these technologies [13]. Additionally, there is a 

significant gap in the scientific literature addressing these 

differences and exploring how AI tools can be adapted to 

specific educational contexts. This study aims to contribute to 

closing this gap by evaluating the impact of Microsoft Copilot on 

the learning and motivation of university students in the Latin 

American context. 

 

1.2 Theoretical Framework 
 

Learning programming, especially in languages like PHP for 

web development, presents significant challenges for university 

students. Among the most common difficulties are the 
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comprehension of abstract concepts, the resolution of syntactic 

and logical errors, and the lack of motivation to persist in the 

face of complex problems [9]. These barriers affect academic 

performance and can generate frustration and disinterest among 

students, hindering their learning process [14]. In response to 

this scenario, educational institutions have sought to implement 

innovative pedagogical strategies that allow these limitations to 

be overcome and promote more effective and motivating 

learning. 

 

In recent years, active learning techniques have gained relevance 

in education, particularly in technical fields such as 

programming [15]. Instructional videos have been widely used to 

facilitate the understanding of complex concepts, as they allow 

students to learn at their own pace and review the content as 

many times as necessary [10]. However, these resources are 

often unidirectional and do not always promote active interaction 

between the student and the learning material. 

 

On the other hand, generative artificial intelligence tools, such as 

Microsoft Copilot, represent an evolution in active learning 

strategies. These tools provide immediate feedback and adapt 

their assistance based on the individual needs of the student [3]. 

Generative AI fosters a more interactive and personalized 

approach by offering real-time code suggestions and 

contextualized explanations, enhancing comprehension and 

student motivation. 

 

The Hedonic-Motivation System Adoption Model (HMSAM) 

provides a useful theoretical framework for understanding how 

generative AI tools like Microsoft Copilot can influence 

technology adoption and effective use in educational contexts. 

This model focuses on hedonic motivation, the pleasure or 

enjoyment users experience when interacting with a technology, 

as a key factor in its adoption [16]. According to HMSAM, 

cognitive absorption, which includes dimensions such as 

enjoyment, immersion, and curiosity, plays a crucial role in 

perceiving a technology's usefulness and ease of use. 
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The HMSAM is based on three main constructs: perceived 

enjoyment, perceived control, and immersion. Perceived 

enjoyment refers to the extent to which the use of a system is 

perceived as pleasurable and fun, serving as a critical predictor 

in hedonic contexts [17]. Perceived control reflects the sense of 

autonomy and mastery that the user experiences when interacting 

with the system, which increases their confidence and 

willingness to adopt the technology [18]. Finally, immersion 

describes a psychological state in which the user feels fully 

absorbed by the technological experience, a key factor in 

systems such as virtual reality and video games [19].   

 

In the context of programming education, each construct of the 

HMSAM plays a distinct role [20,21]. For example, 'perceived 

usefulness' and 'ease of use' help assess how well students 

perceive these tools as effective in supporting coding tasks, 

especially important in introductory programming, where clear 

scaffolding is essential. Enjoyment and curiosity are crucial for 

maintaining engagement during error-prone debugging or logic 

design activities. 'Focused immersion' and 'temporal dissociation' 

are frequently reported by students when deeply engaged in 

solving complex programming challenges. 'Control' reflects the 

learner’s perceived autonomy when navigating through AI-

suggested solutions, and 'behavioral intention to use' is critical 

for understanding whether students would continue using AI 

tools beyond the classroom setting. These constructs were, 

therefore, selected not only for their theoretical grounding in 

HMSAM but also for their practical alignment with the 

motivational, emotional, and cognitive demands inherent to 

programming education [20]. 

 

In line with this, Chakraborty [22] noted that GenAI fosters 

human-machine collaboration, enabling personalized and 

adaptive learning while supporting experiential approaches 

within the HMSAM framework. The study highlights the 

integration of GenAI in curriculum design, teaching, and 

assessment, and its potential to equip students with key 

competencies for the future workforce. These constructs 

influence the intention to use and the effective adoption of 

hedonic systems. For example, in video games, perceived 
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enjoyment and immersion are significant predictors of the 

intention for continued use [23]. In social media applications, 

perceived control and immersion explain the adoption of new 

functionalities [24]. 

 

In the context of programming education, HMSAM suggests that 

tools that generate a pleasurable and motivating user experience 

are more likely to be adopted and used effectively. For instance, 

if students find using Microsoft Copilot enjoyable and 

immersive, allowing them to become absorbed in the coding 

process, they are more likely to perceive the tool as useful and 

easy to use, which in turn may increase their intention for 

continued use [16]. This theoretical approach is particularly 

relevant to the present study, as it allows for the evaluation of the 

cognitive impact of generative AI tools on learning and their 

ability to foster states of immersion, enjoyment, and motivation. 

By considering both the utilitarian and hedonic aspects of the 

experience, HMSAM offers a comprehensive perspective for 

understanding how the adoption and continued use of 

technologies like Microsoft Copilot can positively influence 

academic performance and students' willingness to engage 

actively and sustainably with programming. 

 

Furthermore, the theory of cognitive absorption can be enriched 

by considering knowledge dynamics and knowledge fields—

rational, emotional, and spiritual—as proposed by [25-27] in the 

context of learning. These approaches suggest that constructs 

such as enjoyment, curiosity, and immersion depend on the 

transformation of knowledge across domains: for instance, the 

rational understanding of PHP programming structures may 

evolve into an emotional state of satisfaction or curiosity when 

solving practical problems or even a spiritual connection when 

perceiving a broader purpose in technological learning. Within 

the scope of this study, such transformations may occur during 

active interaction with Microsoft Copilot, which encourages 

autonomous exploration, as well as through instructional videos, 

which provide structured guidance, thereby enhancing the 

adoption and effectiveness of both tools under the HMSAM 

framework. 
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1.3 Objectives and Research Questions 
 

The present study aims to evaluate the capacity of a generative 

AI (Microsoft Copilot) compared to an instructional video to 

generate learning and positive emotional effects when university 

students practice web programming topics in PHP. 

 

The research questions to be considered in this study are: 

RQ1: What differences in learning exist between students who 

practice web programming using Microsoft Copilot versus an 

instructional video? 

RQ2: What differences exist between students who practice web 

programming using Microsoft Copilot and those using an 

instructional video regarding cognitive absorption effects: 

enjoyment, control, focused immersion, temporal dissociation, 

and curiosity? 

RQ3: What differences in effects exist between students who 

practice using Microsoft Copilot and those using an instructional 

video in the dimensions of technology acceptance: ease of use, 

perceived usefulness, and intention to use? 

 

2. Related Works 
2.1 Educational Models, Motivation, and Technology 

Acceptance 
 

The flipped classroom model is a widely researched approach in 

current education, which has garnered interest for its potential to 

foster active student participation. Bishop et al. [28] conducted a 

study that categorized various research on this model based on 

in-class and out-of-class activities, assessment systems, and 

methodological strategies. Although a positive perception was 

observed among students, the results revealed a lack of robust 

empirical evidence supporting significant improvements in 

academic performance. In a complementary study, Sung et al. 

[29] demonstrated that including mobile devices can enhance 

learning outcomes when combined with interactive teaching 

methods. However, Bernard [30] provided a different 

perspective by showing that, in certain contexts, asynchronous 

interaction in distance education environments can be even more 

effective than face-to-face interaction. 
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Digital technologies, beyond their use in the flipped classroom, 

have also been analyzed in the field of education. Gordillo [31], 

for example, compared the effects of game-based learning with 

the use of videos in software engineering courses, concluding 

that games designed by instructors generate better content 

retention outcomes. In line with this, Lowry et al. [16] 

highlighted "cognitive absorption" as a key factor that fosters 

motivation in hedonic educational systems. However, similar to 

the case of flipped methodologies, Bernard et al. [30] 

emphasized the heterogeneity of these findings, noting that not 

all technologies or strategies exhibit the same level of 

effectiveness. 

 

Motivation in learning is another area of study that has received 

special attention. From the self-determination theory perspective, 

Deci and Ryan [32] emphasized the importance of intrinsic and 

extrinsic motivation in academic performance and student well-

being. This theoretical framework aligns with the findings of 

Jena et al. [33], who revealed substantial improvements in self-

regulation and academic performance when using Web 2.0 tools 

for collaborative learning. For instance, a collaborative platform 

facilitated continuous interaction in a language course, 

demonstrating increased student participation and motivation. 

Similarly, Huang and Mizumoto [34] showed that ChatGPT use 

in EFL classrooms enhanced students’ intrinsic motivation and 

writing self-efficacy when structured guidance was provided, 

reinforcing the motivational benefits of GAI in educational 

settings. 

 

Although Jena et al. [33] attribute success primarily to social 

interaction, Litman [35] argues that individual curiosity 

(conceptualized as a driver of personal inquiry) emerges as the 

true catalyst in knowledge acquisition. Krouska et al. [36] found 

that generative AI tools like ChatGPT enhance student 

motivation by promoting enjoyment, effort, outcome evaluation, 

perceived relevance, and interaction. These effects stem from the 

chatbot’s conversational and social features, which foster quality 

engagement and positively influence academic performance. 

These differences underscore the need to delve deeper into the 

contextual factors that may modulate motivation. Similarly, 
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Dousay [37] examined how the design of multimedia resources 

impacts student motivation, highlighting the importance of 

having reliable measurement tools. Meanwhile, Lowry et al. [16] 

proposed the Hedonic-Motivation System Adoption Model 

(HMSAM), in which cognitive absorption (understood as total 

immersion in an activity) directly influences the intention to use 

playful educational systems. Even so, Abdelshiheed et al. [38] 

emphasized that metacognition and motivation in intelligent 

tutoring systems are also essential for preparing for future 

learning. 

 

In the field of technology acceptance, Davis [39] was a pioneer 

in describing how perceived usefulness and ease of use influence 

the adoption of digital systems. Ghimire & Edwards [40] 

emphasized that generative AI adoption in educational settings is 

closely tied to perceived usefulness and ease of use, core 

constructs of the Technology Acceptance Model (TAM). 

Educators are more likely to adopt GenAI when it enhances 

teaching effectiveness and is user-friendly, underlining the need 

for supportive integration strategies. Later, Venkatesh et al. [41] 

integrated multiple theories to formulate the Unified Theory of 

Acceptance and Use of Technology (UTAUT), which has 

demonstrated robustness in identifying key factors in adopting 

technological tools. Both Davis and Venkatesh agree that the 

perception of ease of use plays a determining role in technology 

acceptance, a finding also supported by Steinert et al. [42], who 

used advanced language models to provide formative feedback 

and foster self-regulated learning. Lin & Ng [43] explored user 

motivations and concerns regarding generative AI on platforms 

like Reddit, identifying utilitarian, hedonic, and social 

gratifications, along with creativity enhancement and 

technical/social problems. These factors affect engagement and 

highlight the need for user-centered, ethically grounded AI 

systems that address technological capabilities and societal 

implications to foster broader acceptance. 

 

In contrast, Clark and Mayer [44] posited that instructional 

design has a greater impact than the technological platform used, 

emphasizing that technology alone does not guarantee positive 

outcomes. While not denying the relevance of technology 
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acceptance, this argument highlights the need to align the 

adoption of new tools with carefully designed pedagogical 

strategies. Al-Abdullatif [45] highlighted that AI literacy and 

perceived ease of use are key to GenAI acceptance among 

university instructors, mediated by smart TPACK and perceived 

trust. The study emphasizes the need for educators to strengthen 

their foundational knowledge and pedagogical adaptability to 

integrate GenAI technologies effectively into their teaching 

practices. On the other hand, cognitive load theory (with an 

emphasis on managing students' cognitive resources) has guided 

multiple instructional design proposals. Paas and Van 

Merriënboer [46] established that excessive cognitive load can 

negatively impact learning, particularly in complex tasks 

requiring high processing levels. Similarly, Mayer [47] 

formulated principles based on the cognitive theory of 

multimedia learning, emphasizing the need to use visual and 

textual elements complementarily to avoid overloading working 

memory. 

 

In another study, Martins [48] demonstrated that including 

interactive annotations in educational videos can enhance student 

comprehension by focusing attention and reducing extraneous 

cognitive load. However, the effects of such interventions are not 

always uniform, as Bernard et al. [30] observed significant 

variations depending on the type of interaction promoted, 

highlighting that the implementation of asynchronous or 

synchronous strategies can lead to divergent outcomes. 

Meanwhile, Abdelshiheed et al. [38] suggest that even in the 

presence of well-designed multimedia, metacognition acts as a 

critical factor in learning transfer, which is why cognitive load 

should not only be mitigated but also strategically managed. 

Despite the advances above, gaps in the literature remain. On the 

one hand, some studies, such as those by Bishop & Verleger [28] 

and et al. [29], have primarily focused on student perceptions or 

short-term outcomes without providing longitudinal follow-up of 

the effects on academic performance. Similarly, Bernard et al. 

[30] highlight the heterogeneity in the effect size of interactive 

strategies, suggesting the need to examine in greater detail the 

role of context, discipline, and student characteristics. 
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On the other hand, deeper explorations are needed regarding how 

motivation, in its various dimensions (intrinsic, extrinsic, social, 

and curiosity-based), is modulated by factors such as 

institutional culture, educational level, or the nature of the 

subject matter. Likewise, while models such as those proposed 

by Davis [39] and Venkatesh et al. [41] have provided robust 

theoretical frameworks, Clark & Mayer [44] emphasize the need 

to validate these models across diverse environments with 

heterogeneous characteristics empirically. Finally, it is noted that 

metacognition and self-regulation require more specific 

approaches, particularly when integrating complex technologies 

such as intelligent tutoring systems. 

 

Thus, the reviewed literature reveals a convergence around the 

relevance of motivation, instructional design, and technology 

acceptance as pillars of technology-mediated learning. However, 

divergences persist regarding the efficacy of strategies and 

digital tools and methodological challenges that prevent a 

definitive consensus. It is necessary to conduct studies with 

longer timeframes and greater experimental rigor to clarify the 

conditions under which innovative educational models and 

emerging technologies generate positive and sustainable impacts 

on learning. Only then will it be possible to develop more 

comprehensive, adaptable, and effective approaches within the 

growing educational ecosystem. 
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2.2 Computer Programming 

 

Traditional methods of teaching programming, such as lectures 

and paper-based exercises, have been widely used in higher 

education [9,14,34,49]. However, these approaches are often 

criticized for their lack of interactivity and adaptability to the 

individual needs of students [49,50]. 

 

Yang et al. [51] proposed PSFinder, a tool capable of identifying 

coding screencasts in online videos to improve automation in 

software engineering. This work shares with Codemotion [52] 

the use of machine learning algorithms, particularly computer 

vision, for video processing. However, while PSFinder focuses 

on classifying videos to facilitate automated debugging and 

library recommendations, Codemotion emphasizes interactivity 

with programming content. As a limitation, PSFinder 

experiences difficulties classifying videos with large moving 

objects, whereas Codemotion does not evaluate its effectiveness 

across various video formats. 

 

Using videos as an educational resource in teaching 

programming has been extensively studied. Tutorly [53] 

proposes interactive tutoring based on language models to 

enhance the learning experience for students. The tool integrates 

as a JupyterLab extension and guides learners through 

multimodal conversations that adapt to each individual’s 

progress. One of its main contributions is the video transcript 

segmentation system, which achieves 73.7% accuracy within 

five-second margins. However, it faces challenges with lengthy 

videos, suggesting the need to divide content into shorter clips to 

optimize accuracy. 

 

In parallel, Codewit.us [54] is a tool that combines videos with 

interactive coding exercises to reinforce learning. This platform 

was implemented in introductory programming courses at 

institutions such as the University of California, Santa Barbara, 

where the performance of 156 students was evaluated. The 

results indicate that those who used Codewit.us, integrating 

videos and practical exercises, showed significantly higher 
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interaction frequency than those who accessed these resources 

separately. 

 

While both studies highlight the importance of incorporating 

multiple teaching modalities, their focus differs: Tutorly uses 

language models for personalized tutoring, whereas Codewit.us 

synchronizes videos and exercises to encourage continuous 

practice. Together, these works suggest the need to evaluate such 

systems in different educational contexts and consider their 

integration into various platforms as future research directions. 

W. Liu et al. [53] explored the impact of blended learning 

supported by live streaming for programming students, 

comparing the experiences of full-time students with those who 

also work. Their study, conducted at a university in Taiwan with 

54 participants, revealed that working students preferred code 

annotations to review material at their own pace. In contrast, 

full-time students benefited more from flipped classrooms and 

video-based resources. This approach is comparable to solutions 

based on video-supported programming labs, as analyzed by 

McGowan et al. [55]. These researchers noted that interactive 

video-based learning environments enhance the understanding 

and retention of programming concepts, especially when they 

include practical tasks and guided exercises. However, both 

studies agree on the need to explore the scalability of these 

strategies further across diverse institutions and heterogeneous 

student populations. 

 

Regarding pedagogical innovations, gamification represents 

another avenue of research to improve programming education. 

Mellado and Cubillos [56] demonstrated that using reward 

techniques contributes to better performance in teaching data 

structures. Their proposal aligns with the findings of Ferreira et 

al. [57], who emphasize the importance of feedback and 

continuous assessment in the programming learning process. 

While Mellado & Cubillos [56] focus on motivation through 

playful incentives, Ferreira et al. [57] highlight traditional 

pedagogical strategies to reinforce learning. Both perspectives 

recognize the value of active learning, leaving open the 

possibility of combining gamification with structured feedback 

in future research. 
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Regarding the challenges of learning programming, Kadar et al. 

[58] examined the difficulties faced by students without prior 

computing education. Their conclusions complement those of 

Esche and Weihe [59], who analyzed how various pedagogical 

foundations impact the teaching of programming. While Kadar 

et al. [58] identified structural issues in how programming is 

taught, Esche & Weihe [59] focused on the effect of video-based 

pedagogy on students' self-efficacy. Nevertheless, both studies 

agree on the need to broaden the generalization of their results to 

different educational levels and student profiles. 

 

The reviewed studies show that programming education has 

evolved by incorporating advanced technologies, from artificial 

intelligence to gamification strategies and hybrid teaching 

models. However, common challenges persist, such as the lack 

of longitudinal research to assess long-term impacts and the 

adaptation of methodologies to diverse student profiles. Future 

research could focus on integrating these approaches and 

analyzing potential synergies between AI-based tutoring, 

gamification, and blended learning to enhance the effectiveness 

of programming education. Additionally, it is necessary to 

validate these approaches in varied educational contexts and with 

heterogeneous populations to consolidate their applicability and 

scalability. 

 

2.3 Artificial Intelligence in Education 
 

The evolution and application of generative artificial intelligence 

in programming have generated growing interest in academic 

literature [60]. Various studies have examined the impact of this 

technology on education, code improvement, content generation, 

and software development [61-64]. Recent generative AI 

advancements have significantly improved code quality across 

various programming contexts. For instance, Nettur et al. [65] 

found that GPT-4o, when guided by a chained few-shot 

prompting approach, outperformed other methods in generating 

Cypress automation code, excelling in completeness, syntactic 

accuracy, and maintainability. These findings suggest that the 

quality of AI-generated code is advancing rapidly, offering 
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robust support for programming tasks when paired with effective 

prompting strategies. 

 

Furthermore, generative AI tools have increasingly demonstrated 

their capacity to streamline programming tasks, particularly in 

web development. Mahadevappa et al. [66] highlight that such 

tools can automate the generation of content, design, and web 

code, significantly reducing the time and expertise required for 

development. Similarly, Ho et al. [67] emphasize that generative 

AI can improve student satisfaction and technology acceptance 

in programming courses by enabling the creation of user 

interface materials through simple text-based prompts. Their 

study, focused on App Inventor environments, shows that GAI 

saves instructors time in material preparation and enhances the 

quality and efficiency of instruction, ultimately benefiting 

student motivation and learning outcomes. This capability 

underscores the potential of AI to support both professional and 

educational contexts, particularly for languages like PHP used in 

web programming. In the context of this study, these 

advancements suggest that tools like Microsoft Copilot could 

enhance learning efficiency, provided students are equipped to 

harness their automation features effectively. Additionally, 

Jayachandran [68] notes that generative AI has been integrated 

into competitive programming events for university students, 

lowering participation barriers and boosting interest in 

programming, further illustrating its educational potential. This 

aligns with the present study’s exploration of Microsoft Copilot, 

highlighting the importance of considering how prompt design 

and tool capabilities influence outcomes in academic settings. 

 

Regarding the use of generative artificial intelligence in 

computer programming education, several studies have analyzed 

its effect on the training of future programmers. For example, 

Keuning et al. [69] investigated students' perceptions of AI tools 

in programming courses, finding that the acceptance and use of 

such tools vary depending on the structure of each course and 

students' prior familiarity with the technology. Similarly, Yilmaz 

and Karaoglan Yilmaz [70] reported that incorporating ChatGPT 

into programming instruction enhances self-efficacy and student 

motivation, suggesting that GenAI facilitates the learning 
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process and promotes greater academic engagement. However, 

Wilson and Nishimoto [71] cautioned that using these tools may 

complicate the assessment of student effort and actual 

comprehension, prompting the development of new, more 

appropriate evaluative methods. 

 

In parallel, Shanshan and Sen [72] investigated the usefulness of 

AI-generated content in program debugging. Their results 

suggest that advanced integration of AI into programming tools 

increases performance and computational thinking; however, not 

all levels of integration show statistically significant benefits, 

indicating the need for further studies to understand the scope of 

such integration. 

 

When discussing automation and code improvement in software 

development, Sajja et al. [73] evaluated the impact of GenAI on 

code quality and maintenance, highlighting its potential to 

automate repetitive tasks and enhance the productivity of 

development teams. Yehia [74] also described generative AI as a 

transformative technology capable of generating novel content 

across multiple domains. However, Liu and Li [75] emphasized 

the challenges associated with collaborative programming 

between humans and AI, underscoring coordination issues and 

the importance of considering ethical aspects when integrating 

these tools into educational and professional environments. 

 

On the other hand, Boguslawski et al. [76] examined how 

language models influence the motivation of programming 

students. According to their findings, these models can foster 

autonomy and competence but do not replace the social support 

necessary for robust and meaningful learning. This latter aspect 

is particularly relevant, suggesting that the motivation to 

program with AI may involve additional dimensions beyond 

mere technological availability. 

 

The study by [77] explores the impact of generative AI on 

teaching programming in higher education, comparing its 

effectiveness with video-based learning. Through an experiment 

involving 40 computer engineering students, learning outcomes, 

intrinsic motivation, and perceptions of the learning environment 
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were assessed. The results indicate no significant differences in 

learning outcomes between the methods; however, generative AI 

improved perceptions of autonomy and reduced effort and 

pressure, while videos increased perceptions of competence. 

These findings suggest that both methods motivate students 

differently and complement each other to enhance programming 

instruction in university settings. 

 

Despite the proliferation of research on GenAI in the 

programming field, contradictions and limitations that require 

attention persist. For example, Groothuijsen et al. [78] found that 

using AI chatbots in engineering education negatively influenced 

pair programming and collaboration among students, contrasting 

with studies reporting student engagement improvements [79]. 

Similarly, Frankford et al [80]. noted that while AI tutors in 

automated assessment systems provide timely feedback, they 

may also hinder autonomous learning by offering generic 

responses. 

 

Regarding methodological limitations, Li et al. [81] indicated 

that their research on adaptive learning and GenAI lacks robust 

empirical evidence, limiting its applicability in real teaching 

environments. Similarly, Maphoto et al. [82] examined the 

incorporation of GenAI in distance education. Still, their 

conclusions are confined to a specific context, making it difficult 

to generalize their findings to other settings. 

 

Although various studies analyze the acceptance and application 

of AI in programming, the motivation for programming with AI 

remains a relatively unexplored topic. While research such as 

that by Boguslawski et al. [76] and Yilmaz & Karaoglan Yilmaz 

[70] has approached motivation in programming education, there 

is still a need to investigate the factors that drive programmers to 

adopt AI as a development tool. Understanding these 

motivational drivers is essential for designing more intuitive and 

effective AI systems. Additionally, the relationship between self-

efficacy and reliance on AI in programming requires more 

detailed analysis to determine when AI acts as a learning 

enhancer and when it may generate dependency or limit skill 

development. 
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Overall, recent literature agrees on the positive impact of 

generative AI on programming education and software 

development, although discrepancies persist in collaborative 

aspects and the assessment of learning outcomes. The main 

limitations stem from some studies' lack of generalization and 

robust empirical evidence. Finally, motivation for programming 

with AI emerges as a relevant gap in research, exploring which 

would contribute to the design of strategies and tools that 

promote more effective and responsible adoption of GenAI in 

programming. Ko et al. [83] emphasized that while GenAI tools 

can enhance learning experiences, they raise concerns regarding 

bias, dependency, and ethical dilemmas. The proposed 

framework encourages responsible use by guiding stakeholders 

to ensure GenAI contributes positively to student outcomes 

while addressing environmental and moral challenges in 

educational contexts. 

 

3. Experimental Design 
 

For the present study, a quasi-experimental design was chosen, 

following a quantitative research methodology based on the 

approach used by Mellado et al. [56]. A pretest-intervention-

posttest scheme was implemented, where learning outcomes and 

affective variables were measured during the pre- and post-test 

stages, per the HMSAM model. Microsoft Copilot (Microsoft 

Copilot) was selected as the generative AI tool due to its free 

availability to students through their university-provided Office 

365 accounts, ensuring accessibility, and its robust capabilities 

for real-time code generation and feedback, which align with the 

objectives of teaching PHP programming. While other AI tools, 

such as ChatGPT or Google Gemini (also accessible via 

university accounts), could offer user-friendly interfaces or 

education-specific features, Microsoft Copilot was preferred due 

to students’ prior familiarity with it from previous course 

activities, making it a practical choice for this context. 

 

3.1 Participants   
 

This study involved third-year students from an industrial 

engineering program at a university in Chile as participants. 71 
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students (53 men and 18 women), aged between 19 and 21, 

participated in the intervention. The activity was conducted 

during the first semester of 2024. Participants were randomly 

assigned to two groups: 35 students (23 men and 12 women) 

used Microsoft Copilot, and 36 (27 men and 9 women) utilized 

instructional videos as their study medium. The randomization 

was performed using the random group assignment feature in the 

Moodle platform, which automatically allocates participants into 

groups randomly. 

 

To ensure the integrity of the random assignment, the Moodle 

group assignment function was configured to conceal group 

composition from the participants, thereby guaranteeing that 

students could not ascertain the assignment of their peers. Each 

student had access solely to the information about their group 

(Microsoft Copilot or instructional videos) via the platform, with 

no possibility of viewing the resources allocated to others. The 

assignment was executed automatically through the Moodle 

randomization feature before the commencement of the 

intervention, without manual intervention, which minimized the 

risk of bias in the allocation process. However, owing to the 

study design and logistical constraints, stratification strategies 

were not implemented, nor was the balance in additional baseline 

variables, such as gender, prior programming experience beyond 

the course modules, or digital literacy, verified. The pre-test 

focused exclusively on assessing knowledge of PHP, as this 

constituted the focus of the learning module, and all students 

possessed a similar exposure to the preceding Java and database 

modules, thereby minimizing initial variability within the context 

of this study. This process was completed before the 

intervention, ensuring each student had an equal probability of 

being assigned to either group. It was managed through Moodle, 

which facilitates access to the respective resources. Participation 

was voluntary; thus, this description excludes students who 

began but did not complete the activity. 

 

We relied on the pre-test to assess initial PHP knowledge to 

control for potential pre-existing differences, as detailed in 

Section 4.1. An ANOVA applied to the pre-test scores confirmed 

no significant differences between the groups (F(1,69) = 0.451, p 
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= 0.50), indicating that the randomization effectively balanced 

prior knowledge. Additional variables such as age, gender, or 

previous academic performance were not analyzed in this study 

due to its scope and resource limitations. However, the random 

assignment via Moodle, combined with the pre-test equivalence, 

supports the comparability of the groups at baseline for this 

quasi-experimental design. 

 

3.2 Curriculum   
 

The activity was conducted as part of a software systems course, 

which includes a module on data structures in Java (8 weeks), 

another on databases (4 weeks), and a final module on web 

design with HTML and PHP (4 weeks). While the prior modules 

provided a foundation in programming logic and database 

management, the PHP module introduced a new language and 

web-specific concepts, representing a shift that required students 

to adapt their existing knowledge. The course consists of 3 

weekly lecture sessions and 2 weekly laboratory workshop 

sessions. The learning objectives (LOs) considered in the activity 

correspond to the web module and were as follows:   

LO1: The student analyzes basic PHP elements such as blocks, 

variables, loops, and decision-making in algorithmic solutions to 

simple problems.   

LO2: The student correctly handles arrays, superglobal variables, 

and their concatenation with strings in algorithmic solutions.   

LO3: The student correctly uses the `mysqli_` functions to 

interact with databases. 

 

3.3 Process 
 

Figure 1 illustrates the overall process used, which consists of 

four stages: (1) explanation of objectives and modality, (2) 

diagnostic assessment, (3) intervention with the exercise, and (4) 

final evaluation. In the first stage, during the lecture session, the 

objectives, modality, and deadlines for the exercise activity were 

explained. Later in the same week, during the two workshop 

sessions, stage 2 was carried out, which involved the application 

of diagnostic instruments to establish a baseline for comparison, 

both for initial knowledge and for affective perceptions about the 
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upcoming activity (under the HMSAM model). During the same 

workshop sessions, stage 3 began, which consisted of the actual 

exercise, dividing participants into two groups: Microsoft 

Copilot and an instructional video. Figure 3 provides an example 

of an exercise from the PHP practice guide used specifically 

during stage 3 by the Microsoft Copilot group, highlighting the 

integration of follow-up questions to guide interaction with the 

AI tool. 

 

The group division and activity sequence were managed through 

the Moodle platform assigned to the course. Participants were 

given 7 days to complete the exercise guide and the final 

questionnaires (stage 4), which included a final knowledge test 

and a perception questionnaire (HMSAM). 

 

Although no explicit or formal training was provided 

immediately before the intervention, students assigned to the 

Microsoft Copilot group were assumed to be familiar with 

generative AI tools, including Microsoft Copilot specifically. 

This familiarity stemmed from their prior experiences within the 

course, where they had previously engaged informally with 

generative AI tools such as Microsoft Copilot, ChatGPT, and 

Google Gemini via their institutional Office 365 accounts. 

Consequently, only brief general instructions were given, 

allowing participants to interact freely with Microsoft Copilot 

during the exercises without additional detailed guidance or 

standardization protocols. 
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Figure 1: Experimental process used. 

 

Specific diagnostic instruments (pre- and post-tests) were used to 

evaluate learning, such as the example presented in Figure 2, 

which was drawn from a repository of questions and selected 

randomly. The example in Figure 2, extracted from the 

repository of questions used in the pretest and posttest, focuses 
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on identifying and correcting errors in a PHP code that interacts 

with a MySQL database. The objective of the code is to process 

name and surname variables sent through a form, insert them 

into a table called "personas," and then display the results in an 

HTML table. However, the code contains several errors that 

must be corrected to function properly. These errors include 

incorrect use of SQL syntax in the INSERT statement, lack of 

data validation, and potential security issues such as SQL 

injection. The PHP instructions must also be reviewed to ensure 

the data is handled and displayed correctly in the browser. This 

exercise allowed for evaluating both the students' technical 

knowledge and their ability to apply programming concepts in 

practical contexts. 

 

 
 
Figure 2: Example of the type of question used in pre and post-test. 

 

Both groups used the same PHP practice guide, including a 

series of exercises with code snippets. Each exercise presents 3 
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to 4 non-exclusive alternatives containing statements about 

possible outcomes or consequences of the given code, specific 

lines of code, or potential replacements for certain lines of code. 

It is important to emphasize that this exercise guide is a 

compilation of various exercises used in previous semesters and 

captures the most frequent errors made by students who, despite 

having learned the material, begin coding in PHP. 

 

Figure 3 presents an exercise from the PHP practice guide used 

in stage 3 by the Microsoft Copilot group, where a PHP block 

surrounds HTML code. Specifically, line 5 with $objetos = 2; is 

outside the PHP block, meaning it will not be preprocessed and 

will be displayed as plain text. The figure has been enlarged to 

enhance the legibility of the code and accompanying text. 

 

To the Copilot software, in “precise” mode, add the following 

code prompts and questions: 

<html> 

<head> 

  <title>Cálculos generales</title> 

</head> 

<body> 

  $objetos = 2; 

  <?php 

    $peso = 10; 

    echo "Peso total"; 

    echo $objetos * $peso; 

    echo "<br>"; 

  ?> 

</body> 

</html> 

 

Analysis Question: 

1.1 The AI responded by assuming that the variable $objects is 

inside the PHP block. Is this correct? If not, correct the answer. 

 

Alternatives proposed to the student: 

a. The user will see, among other texts, the value 20. 

b. The user will see, among other texts, the value 10 and the text 

<br>. 
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c. The user will see, among other texts, the string $objects=2; 

d. The line containing $objects=2; will generate an error and will 

not be displayed. 

 
Figure 3: Exercise 1 of the guide used. 

 

Likewise, Figure 4 presents a PHP code snippet that utilizes the 

$POST superglobal variable to construct a database query in the 

$sql variable by concatenating strings with variables. 

Additionally, it uses Mysqli_ functions. 

 

For the following PHP code, return the correct alternatives with 

their justification: 

<?php 

$nombre = $_POST["nombre"]; 

$apellido = $_POST["apellido"]; 

$sql = "INSERT INTO personas (nombre, apellido) VALUES 

('$nombre', '$apellido')"; 

 

$conexion = mysqli_connect("localhost", "usuario", 

"contraseña", "basededatos"); 

$resultado = mysqli_query($conexion, $sql); 

 

if ($resultado) { 

  echo "Registro insertado correctamente."; 

} else { 

  echo "Error al insertar: " . mysqli_error($conexion); 

} 

 

mysqli_close($conexion); 

?> 

 

Analysis Question: 

The AI generated a statement that directly concatenates the 

values of the variables $firstName and $lastName within the 

SQL statement. 

 

Is this procedure correct? What observations would you make 

about this snippet? 

Proposed alternatives (according to the original guide): 
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a. The code is well-written and should not generate errors. 

b. Using double quotes with variables within the INSERT 

statement can cause interpretation errors. 

c. The $sql variable should be declared within a function to 

avoid conflicts. 

d. Using $_POST can allow the user to manipulate the query if 

there is no prior validation. 

 
Figure 4: Exercise 5 of the guide used. 

 

The control group used a video (see Figure 5) specifically 

created to review each exercise in the guide. The video explained 

why the different alternatives presented were either correct or 

incorrect. 

 

 
 
Figure 5: Explanatory video of the exercises is in the guide. 

 

The experimental group used the same exercises but with the 

instruction to query Microsoft Copilot. Additionally, the 

exercises for this group included follow-up questions to guide 

students in evaluating the correctness of the AI’s responses. For 

instance, in Exercise 1 (see Figure 3), a follow-up question 1.1 

asks whether the AI considered the variable $objetos outside a 

PHP block. If not, the students were instructed to correct the AI. 
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To scaffold students’ critical engagement with Microsoft 

Copilot, the exercise guide used in this group included follow-up 

questions accompanying specific tasks (see Figure 3). Given the 

context of each exercise, these questions prompted students to 

evaluate whether the AI's suggestions were syntactically and 

logically appropriate. For instance, one prompt asked: 'Did the 

assistant consider that the variable $objetos is outside the PHP 

block?' Students were encouraged to reformulate their queries or 

adjust the proposed code when discrepancies were detected. 

These prompts aimed to foster metacognitive awareness, reduce 

overreliance on AI suggestions, and support the iterative 

refinement of solutions. 

 

3.4 Instruments 
 

For the initial and final knowledge tests, exercises similar to 

those in the guide were used, following the format of code 

snippets with four non-exclusive alternatives. The pre-test and 

post-test included six exercises (two associated with each 

Learning Objective, LO), randomly selected from a pool of 18 

exercises (distinct from the guide), with scores ranging from 0.0 

to 10.0. These exercises were developed from materials used in 

prior semesters of the software systems course and aligned with 

the PHP module’s learning objectives. Content validity was 

ensured through review by two instructors with over five years 

of PHP teaching experience. The pre- and post-test exercises 

were extracted from a broader item bank applied in the Software 

Systems course for over four academic years (seven semesters), 

primarily as practice and assessment tools aligned with the 

course’s PHP module learning objectives. These items were 

developed by instructors with extensive experience in 

programming instruction and have undergone iterative 

refinement based on student performance and instructional 

feedback. While detailed item analysis was not conducted, the 

sustained application of these items across cohorts supports their 

empirical reliability and content validity. Post-hoc analysis of the 

post-test scores showed a Cronbach’s alpha of 0.82, indicating 

good reliability. Figure 6 shows an example of a question used in 

the pre-test.  
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It is important to note that both experimental conditions—

Microsoft Copilot and instructional video—worked with the 

same practice guide and were assessed using pre- and post-tests 

drawn from a shared item bank. This uniformity ensures that 

familiarity with item formats or content is applied equally across 

both groups, minimizing the risk of biased learning gains due to 

prior exposure. 

 

 
 
Figure 6: Sample question in knowledge pretest. 

 

On the other hand, for the initial and final perception tests, the 

HMSAM model was used with its eight dimensions: usefulness, 

enjoyment, ease of use, intention to use, control, focused 

immersion, temporal dissociation, and curiosity [16]. The total 

number of statements for both tests was 24 items, measured on a 

Likert scale from 1 to 7, where 1 corresponded to "Strongly 

Disagree," 4 to "Neutral," and 7 to "Strongly Agree". 
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Table 1: List with questions (statements) by construct of the HMSAM model 

(for pretest). 

 
Construct Question 

Control (Ctrl) • I will have little control over what I can do (Rev). 

• I expect to have control while performing the 

activities. 

• I expect to be able to freely choose what I want to 

see or do while performing the activities. 

Curiosity (Cur) • This experience will stimulate my curiosity. 

• This experience will spark my imagination. 

• This experience will make me curious. 

Temporal 

Dissociation 

(TD) 

• Time will seem to pass very quickly while doing the 

activity. 

• I will lose track of time while doing the activities. 

• Time will "fly" when I do the exercises. 

Ease of use • I believe navigating, writing questions, and reading 

answers will be easy. 

• I find that the activity with the ICT resource will be 

easy to use. 

• I believe that interacting with the ICT resource 

during the activity will be clear and understandable. 

Focalized 

Immersion (FI) 
• I will be focused and able to block out most 

distractions. 

• I will be absorbed/engaged in what I will be doing. 

• I will be immersed in the activity. 

Enjoyment • I will enjoy performing the activity. 

• I think it will be a fun activity. 

• The experience of the activity will be pleasant. 

Behavioral 

Intention of Use 

(BIU) 

• I believe I would plan to use it in the future to 

review. 

• I expect to continue using it in the future. 

• I believe I will intend to keep using this ICT resource 

during the semester. 

Utility • I expect that this activity will improve my 

knowledge of PHP. 

• I expect that this activity will help me with PHP 

programming. 

• I find that performing the activity will be useful. 

 

4. Results 
 

The statistical software SPSS 29 was used to analyze the results. 

Analysis of variance (ANOVA) and analysis of covariance 

(ANCOVA) tests were considered to measure the differences in 
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initial and final learning outcomes. To measure the size of the 

effects found, partial eta squared (η²) was used, with values of 

0.01 indicating a small effect, 0.06 a medium effect, and 0.14 or 

greater a large effect [84]. 

 

4.1 Learning Effects 
 

Table 1 presents the descriptive statistics for the knowledge tests 

administered at the beginning and end of the intervention, 

separated by experimental condition (video vs. Microsoft 

Copilot). 

 

For assessing normality on pretest scores a Shapiro-Wilk test 

was performed for the Copilot (W = 0.97, p = 0.36) and the 

Video (W = 0.98, p = 0.54) groups, showing non significant 

differences from normality. On postest scores, Shapiro-Wilk test 

provided (W = 0.95, p = 0.13) for the Copilot and (W = 0.95, p = 

0.11) for the Video conditions, indicative for normality. A 

Levene's test showed homogeneity of variances between 

conditions for pretest (F = 0.38, p = 0.54)and postest (F = 3.18, p 

= 0.08) scores. 

 
Table 2: Descriptive statistics of pretest and posttest per condition. 

 
Group N Pretest Postest 

Mean Standard 

deviation 

Mean Standard 

deviation 

Microsoft 

Copilot 

35 4.46 2.42 5.69 2.32 

Video 36 4.85 2.52 8.17 1.23 

Total 71 4.66 2.46 6.94 2.22 

 

When an ANCOVA test was applied to the post-test scores, 

using the pre-test as a covariate, to measure possible differences 

between groups, significant differences were found between the 

two groups. The group that used videos showed a higher post-

test score than the group that used Microsoft Copilot, with 

F(1,68) = 32.621, p < 0.001, η² = 0.32 (see Figure 7). 

 

Additionally, an analysis of variance (ANOVA) test was applied 

to the pre-test scores by the group to verify whether there were 

differences between the groups, yielding F(1,69) = 0.451, p = 
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0.50, and no significant differences were detected in the prior 

knowledge levels of the subjects in both groups. Similarly, an 

ANOVA was applied to the post-test scores by group, resulting 

in F(1,69) = 31.920, p < 0.001, η² = 0.32, indicating that the 

video group had a significantly higher post-test score than the 

Microsoft Copilot group.  

 

 
 
Figure 7: Estimated marginal means for posttest among conditions (video vs 

MSCopilot). 

 

4.2 HMSAM Effects 
 

Table 3 details the descriptive statistics for the pre-and post-

intervention measures of the eight dimensions of the HMSAM 

model, broken down by condition. The constructs considered 

were usefulness, enjoyment, ease of use, intention to use, 

control, focused immersion, temporal dissociation, and curiosity. 

A Cronbach's alpha of 0.94 for the pre-IMI and 0.93 for the post-

IMI perception tests was obtained. 

 

On post perception values, homogeneity of variances between 

groups was assessed by the Levene's test for each of the eight 

constructs: Utility (F = 2.69, p = 0.11), Enjoyment (F = 2.84, p = 

0.70), Ease of Use (F = 0.71, p = 0.40), BIU (F = 1.60, p = 0.21), 
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Control (F = 0.96, p = 0.33), FI (F = 0.82, p = 0.37), TD (F = 

2.25, p = 0.14), and Curiosity (F = 0.02, p = 0.90). 

 

On pre-post perception values, the Levene's test showed equality 

of variances on Utility (F = 1.84, p = 0.18), Enjoyment (F = 0.24, 

p = 0.63), Ease of Use (F = 1.34, p = 0.25), BIU (F = 0.10, p = 

0.75), Control (F = 0.74, p = 0.39), FI (F = 1.54, p = 0.22), TD 

(F = 3.57, p = 0.06), and Curiosity (F = 0.14, p = 0.71). 

 
Table 3: Descriptive statistics of HMSAM pretest and posttest perceptions per 

condition. 

 
Construct Condition Pretest Postest 

Mean Standard 

deviation 

Mean Standard 

deviation 

Utility Copilot 5.78 0.99 5.48 1.14 

Video 5.72 0.94 5.92 0.87 

Total 5.75 0.96 5.70 1.03 

Enjoyment (Joy) Copilot 4.76 1.24 4.70 1.25 

Video 5.19 1.25 5.26 1.22 

Total 4.98 1.25 4.98 1.26 

Ease of Use Copilot 5.47 0.96 5.58 1.19 

Video 5.68 0.95 5.90 1.05 

Total 5.58 0.96 5.74 1.12 

Behavioral 

Intention of Use 

(BIU) 

Copilot 5.54 1.16 5.41 1.25 

Video 5.64 1.00 5.93 1.03 

Total 5.59 1.08 5.67 1.16 

Control (Ctrl) Copilot 5.24 0.93 5.11 1.05 

Video 5.46 0.89 5.43 1.16 

Total 5.35 0.91 5.27 1.11 

Focalized 

Immersion (FI) 

Copilot 5.13 1.02 5.12 1.04 

Video 5.41 1.13 5.54 1.22 

Total 5.28 1.08 5.33 1.15 

Temporal 

Dissociation (TD) 

Copilot 4.41 1.27 4.60 1.39 

Video 5.01 1.32 5.00 1.52 

Total 4.72 1.32 4.80 1.46 

Curiosity (Cur) Copilot 4.83 1.33 4.69 1.34 

Video 5.17 1.33 5.35 1.26 

Total 5.00 1.34 5.03 1.33 

 

A two-way ANOVA was conducted considering the post-

intervention measures, with the condition (video / Microsoft 

Copilot) and the HMSAM dimensions as factors on the scores 

obtained. The result was F(1,69) = 3.820, p < 0.055, η² = 0.05, 

indicating a marginally significant interaction. After performing 
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pairwise comparisons with Bonferroni adjustment, it was found 

that only the construct of curiosity showed a significant 

difference in favor of the video condition, with F(1,69) = 4.630, 

p < 0.035, η² = 0.06. 

 

This was followed by the dimensions of usefulness (F(1,69) = 

3.301, p < 0.074, η² = 0.05 ), enjoyment (F(1,69) = 3.716, p < 

0.058, η² = 0.05 ), and intention to use (F(1,69) = 3.536, p < 

0.064, η² = 0.05 ), all showing differences in favor of the video 

condition, though not reaching conventional levels of 

significance. The remaining dimensions also showed differences 

favoring the video condition but were not statistically significant, 

as shown in Figure 8. 

 

 
 
Figure 8: Post-perception scores of HMSAM constructs per condition. 

 

An ANOVA was also conducted with the condition and 

HMSAM dimensions as factors, but this time on the score 

differences (post-test – pretest), yielding F(1,69) = 2.912, p < 

0.092, η² = 0.04. Pairwise comparisons with Bonferroni 

adjustment revealed significant differences for the dimensions of 

usefulness (F(1,69) = 5.135, p < 0.027, η² = 0.07 ), intention to 

use (F(1,69) = 5.867, p < 0.018, η² = 0.08 ), and curiosity 

(F(1,69) = 4.437, p < 0.039, η² = 0.06 ), all favoring the video 

condition over the Microsoft Copilot condition (see Figure 9). It 

is important to note that, although eight separate ANOVA tests 

were conducted across the HMSAM constructs, no correction for 

family-wise error rate (FWER), such as Bonferroni or False 

Discovery Rate (FDR), was applied. This constitutes a limitation 

of the current analysis. However, the observed effects were 
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consistent in direction and supported by medium effect sizes in 

key dimensions (e.g., η² = 0.06 for curiosity, η² = 0.08 for 

intention to use), suggesting that the findings are not solely due 

to random variation. Future studies should implement 

appropriate p-value correction techniques to ensure more 

conservative statistical inference and control for inflated Type I 

error risk when testing multiple constructs. 

 

 
 
Figure 9: Pre-post perception differences of HMSAM constructs per condition. 

 

5. Discussion 
5.1 Learning Effects 
 

The findings confirm that, although both methods promote 

improvements in student performance, those who followed the 

video-based instruction route achieved significantly greater 

progress. Several factors can explain this phenomenon. 

 

From the cognitive load theory perspective [46,85], learning 

complex content (such as web programming logic) benefits from 

resources that optimize the distribution of mental load. In video-

based instruction, students can process information visually and 

audibly simultaneously, facilitating the formation of integrated 

mental models [44,47]. This advantage is amplified by the fact 

that the instructional videos used in this study were specifically 

designed to teach PHP programming, with structured 

explanations and examples tailored to address common 
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challenges in understanding complex concepts and algorithms. In 

contrast, while Microsoft Copilot provides immediate and 

adaptive feedback [86,87], it is a general-purpose GenAI tool not 

explicitly optimized for pedagogical purposes, requiring students 

to formulate questions and validate responses independently. 

Additionally, the ability to pause and rewind allows learners to 

control the pace of learning and focus on the most complex 

elements [28,48], further enhancing the effectiveness of these 

purposefully crafted audiovisual resources. This adaptive control 

over the learning pace may help reduce extraneous cognitive 

load, allowing students to understand better the code’s logic and 

structures [46]. 

 

Although Microsoft Copilot provides immediate and adaptive 

feedback [86,87], students must formulate questions and validate 

the relevance of the generated responses. This process requires a 

higher level of metacognition and digital competencies to 

evaluate the quality of the feedback [38,42]. In contrast, videos 

present carefully sequenced examples and explanations, reducing 

uncertainty about appropriate practices. In this way, students 

perceive constant reinforcement that increases their perceived 

competence [39] and motivates them to continue exploring 

without fear of initial failure [33]. 

 

The inclusion of follow-up questions in the Copilot group 

(Figure 3) sought to support this evaluative process. These 

prompts encouraged learners to analyze the AI’s output and 

identify potential inaccuracies critically. However, the impact of 

these questions likely varied depending on the student’s level of 

engagement. Some participants may have used them effectively 

to guide iterative improvement, while others may have skipped 

them or answered superficially, leading to inconsistent benefits 

across the group. 

 

In addition to these cognitive factors, it is important to consider 

that the quality and structure of the instructional content may 

have differed significantly between groups. The video provided a 

consistent, pedagogically sequenced explanation for each 

exercise, ensuring uniform content delivery across all 

participants. In contrast, the AI group relied on individually 
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formulated prompts, resulting in variability in the responses' 

relevance, depth, and accuracy from Microsoft Copilot. This 

inconsistent content delivery may have contributed to the 

observed differences in learning outcomes. Future studies should 

control instructional structure across conditions to ensure more 

comparable and reliable evaluations of effectiveness. 

 

While Levene’s test indicated homogeneity of variances between 

groups, the observed differences in post-test standard deviations 

(2.32 vs. 1.23) may suggest potential variance heterogeneity. 

However, given the substantial difference in post-test means, the 

coefficient of variation (CV) offers a more appropriate metric of 

relative dispersion, revealing that variability was not 

disproportionate when adjusted for group means. Moreover, 

ANCOVA is generally robust to moderate violations of the 

homogeneity of variances assumption, particularly in balanced 

designs [88,89]. Nonetheless, we acknowledge this as a potential 

limitation. As a future line of research, simulation studies [90] 

could be implemented to evaluate how deviations from normality 

or homoscedasticity might influence the robustness of ANCOVA 

results in educational contexts involving generative AI. 

 

The Hedonic-Motivation System Adoption Model (HMSAM) 

establishes that the sense of enjoyment and perceived usefulness 

are key determinants in the adoption and effectiveness of 

learning systems [16]. On the other hand, audiovisual resources 

(with narrative, practical examples, and demonstrations) tend to 

generate greater affective and cognitive engagement by 

stimulating attention, curiosity, and interest [44,91]. In line with 

this, previous studies have shown that video-based learning can 

foster deeper emotional involvement, facilitating concept 

retention [29,31]. In contrast, interaction with generative 

artificial intelligence may be less engaging and require self-

regulation strategies that not all students have developed, 

especially at the early stages of programming [30]. 

 

From an instructional perspective, Microsoft Copilot promotes a 

more active learning approach regarding exploration and 

constantly testing hypotheses within the code [82,92,93]. 

However, this constructivist approach may generate uncertainty 
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when students lack a robust foundation in programming syntax 

and logic. On the other hand, instructional videos adopt an 

expository approach, where the teacher’s guidance is explicit, 

and students assimilate problem-solving strategies more directly 

[28]. This difference becomes particularly noticeable in the early 

stages of learning when familiarity with basic concepts is 

essential to avoid cognitive overload [47,85]. 

 

Thus, despite the clear inclination of the results toward the 

effectiveness of videos, the findings do not diminish the value of 

generative artificial intelligence as a reinforcement tool or for 

advanced tutoring [80,81,94]. In particular, a mixed instructional 

strategy that combines the systematic and exemplified 

presentation of a video with the personalized feedback of 

Microsoft Copilot could maximize learning by providing a solid 

initial conceptual framework, followed by guided and immediate 

experimentation [29,33]. Future research could explore the 

optimal integration of both methods based on student profiles, 

such as their level of experience, learning styles, and intrinsic 

motivations. 

 

The greater effectiveness of video in improving web 

programming learning can be explained by the reduced 

extraneous cognitive load, which facilitates sequential 

information reception through multiple modes; sustained 

attention and motivation derived from audiovisual resources; and 

the immediate and accessible support that reduces uncertainty for 

novice students. With this, we can answer the research question: 

Are there differences in learning between students who practice 

web programming using Microsoft Copilot versus instructional 

videos? Affirmatively, learning differences favor video-based 

instruction over generative artificial intelligence-based practice. 

The profile of the participants (third-year industrial engineering 

students rather than computer science students) may further 

explain the observed learning effects. Unlike computer science 

students, who typically have extensive prior exposure to 

programming, industrial engineering students in this study had 

limited experience, primarily from prior course modules in Java 

and databases. This relative novelty of programming, 

particularly in PHP, likely heightened the importance of 
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affective factors such as curiosity, enjoyment, and immersion, as 

these students relied heavily on structured guidance (e.g., videos) 

to build confidence and competence. Consequently, the greater 

effectiveness of instructional videos may reflect their ability to 

meet the needs of learners with less programming expertise, 

suggesting that the comparative advantage of videos over 

Microsoft Copilot could vary with students who have stronger 

technical foundations. 

 

An additional consideration that may limit the generalizability of 

our findings is the exclusive focus on PHP. While PHP was 

chosen for its curricular relevance and role in web development, 

different programming languages pose distinct syntactic, 

semantic, and conceptual challenges. For example, languages 

such as Python or JavaScript offer various levels of abstraction 

and readability, which could influence how learners interact with 

generative AI tools or benefit from structured instructional 

materials. Thus, the effectiveness observed in this study may not 

directly translate to other programming contexts. Future research 

should replicate this design using diverse programming 

languages to assess whether the comparative impact of 

instructional videos and AI tools remains consistent. 

 

These conclusions open the door to the strategic use of both 

modalities, combining their strengths while mitigating their 

limitations. Thus, this integrated approach optimizes teaching 

and learning processes in web programming, databases, and 

Java. This integrated approach holds significant potential for 

enhancing educational outcomes and addressing the diverse 

needs of learners at different stages of their programming 

journey. 

 

Nonetheless, it is important to underscore that the present 

findings are based solely on immediate post-intervention 

assessments. As such, they reflect short-term knowledge 

acquisition rather than long-term learning or retention. Without 

longitudinal follow-up data, we cannot determine whether the 

observed advantages of instructional videos persist over time. 

Nevertheless, it is important to note that the scope and design of 

this study were deliberately aligned with short-term, well-
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defined learning objectives. As established in instructional 

design theory and supported by Bloom’s taxonomy, limited 

interventions can be appropriate and effective when the targeted 

learning outcomes are specific, foundational, and skill-oriented 

[95-97]. Therefore, while long-term retention merits future 

study, the present design remains methodologically sound for its 

intended scope. Future studies should include delayed post-tests 

or follow-up assessments to examine the durability and 

transferability of these learning outcomes. 

 

Although the pretest confirmed equivalence in baseline PHP 

knowledge between groups, it is important to note that this 

instrument did not directly assess broader aspects of digital 

literacy or prior experience with generative AI tools. While not 

measured, these factors could have contributed to the variability 

in how students interacted with Microsoft Copilot. For example, 

two students with similar programming knowledge may differ 

significantly in their ability to formulate prompts, interpret 

responses, or detect inaccuracies in AI outputs due to differences 

in their digital fluency. This represents a potential source of 

uncontrolled variance in the AI group. We recommend that 

future research incorporate explicit instruments to assess digital 

literacy and prior AI exposure, potentially including them as 

covariates or segmentation variables in experimental designs. 

 

While the present study included a structured exercise guide with 

follow-up prompts designed to scaffold critical engagement with 

Microsoft Copilot, it did not incorporate a system for recording 

the number, content, or quality of student interactions with the 

tool. This limits the ability to assess the consistency or depth of 

engagement across participants, as actual usage behaviors (e.g., 

number of prompts submitted, adherence to correction 

instructions, or time on task) were not tracked. Although all 

participants in the AI condition received the same guided 

activities, designed to foster metacognitive reflection and 

verification of Copilot’s responses, there remains a gap between 

the intended instructional design and the unobserved execution 

of that design. Future studies should integrate interaction logging 

or usage analytics to more precisely evaluate the relationship 

between engagement patterns and learning outcomes. 
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Additionally, we did not record the number of queries or 

interactions each student had with Microsoft Copilot, which 

limits our ability to evaluate engagement consistency across 

participants. The absence of data on the quantity, quality, or 

nature of prompts (e.g., specificity, complexity, or frequency) 

precludes a detailed analysis of how student engagement with 

Microsoft Copilot influenced learning outcomes. Variability in 

prompt formulation and interaction patterns likely contributed to 

differences in the tool’s effectiveness, as its performance heavily 

depends on the user’s ability to craft effective prompts and 

critically assess AI-generated responses. Future studies should 

incorporate usage tracking or interaction logs to quantify 

engagement levels and explore their correlation with learning 

gains, thereby offering deeper insights into the role of AI tool 

proficiency in programming education. 

 

Another critical factor potentially influencing the learning 

outcomes was the absence of explicit and standardized 

instructions for students interacting with Microsoft Copilot. 

While previous informal exposure to Microsoft Copilot and other 

generative artificial intelligence tools provided students with 

practical knowledge and competence in querying and 

interpreting AI outputs, individual variability in proficiency and 

approaches likely emerged. This variability might have 

influenced the consistency and effectiveness of interactions 

during the experimental activity. Future studies should explicitly 

standardize training sessions and develop structured interaction 

protocols for generative AI tools, thus ensuring greater 

methodological rigor, usage consistency, and improved results 

comparability across experimental conditions. 

 

5.2 HMSAM Effects 

5.2.1 Cognitive Absorption 
 

The results of the present study focused on evaluating 

differences in the effects of cognitive absorption (enjoyment, 

control, focused immersion, temporal dissociation, and curiosity) 

between students who used Microsoft Copilot (Microsoft 

Copilot) and instructional videos to practice web programming, 

revealed that curiosity showed a significant difference in favor of 
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the group that used videos over those who used generative 

artificial intelligence under the Microsoft Copilot model. This 

finding aligns with prior research highlighting the role of 

structured multimedia resources in stimulating intrinsic interest 

[35,37,47]. 

 

Most likely, curiosity, as the foundation of exploratory learning, 

was favored by instructional videos due to their ability to reduce 

extraneous cognitive load [85]. By integrating visual and 

auditory elements sequentially, videos facilitate the formation of 

coherent mental schemas, allowing students to focus on the logic 

of the code without informational overload [44]. This structured 

instructional design focuses attention and generates a sense of 

progressive competence, which is key to sparking curiosity [32]. 

For example, pausing and reviewing complex segments 

empowers students to explore concepts at their own pace, 

fostering self-directed curiosity [28]. 

 

In contrast, interaction with a generative artificial intelligence 

like Microsoft Copilot, while offering immediate feedback, may 

introduce beginner uncertainty by requiring the formulation of 

precise questions and the critical validation of responses 

generated by artificial models—processes that demand 

metacognitive skills still under development [38]. This dynamic 

could inhibit curiosity by being perceived as an obstacle to 

autonomous exploration. 

 

Regarding the other constructs, such as enjoyment, control, 

focused immersion, and temporal dissociation, no significant 

differences were found between the groups. However, relevant 

trends were observed. In terms of enjoyment, videos scored 

slightly higher, suggesting that audiovisual storytelling might 

generate greater satisfaction by engaging emotional stimuli [91]. 

In terms of control, both methods showed similar levels, 

indicating that the flexibility of videos (pausing, rewinding) and 

the interactivity of Microsoft Copilot address different needs for 

autonomy. Although not statistically significant, focused 

immersion and temporal dissociation reflected that both 

approaches require comparable sustained attention, a critical 

aspect in programming environments [31]. 
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These findings have significant pedagogical implications. 

Instructional videos emerge as effective tools for fostering 

curiosity in the early stages of learning, where clarity and 

structure are prioritized. However, Microsoft Copilot could be 

integrated into advanced stages, where students, already familiar 

with basic concepts, require personalized feedback for complex 

problems [42]. 

 

In response to the research question: Are there differences 

between students who practice web programming using 

Microsoft Copilot and those using instructional videos regarding 

cognitive absorption effects: enjoyment, control, focused 

immersion, temporal dissociation, and curiosity? We can state 

that only curiosity significantly differed in favor of the group 

that used videos. This result suggests that videos better foster 

intrinsic interest by structuring content clearly and through 

multisensory means. In contrast, no significant differences were 

found in the other constructs. This indicates that while structured 

multimedia resources enhance curiosity, different dimensions of 

cognitive absorption may depend on contextual factors or 

individual preferences. 

 

Future research should explore hybrid models that combine both 

methodologies, adapting to student profiles and experience 

levels. It should also assess the long-term impact of curiosity on 

the retention of technical skills. Such investigations could 

provide deeper insights into optimizing learning strategies in 

web programming and related fields, ensuring that instructional 

approaches align with cognitive and motivational needs. 

 

5.2.2 Dimensions of Technological Acceptance 
 

The analysis of score differences (post-test – pre-test) revealed 

significant differences in perceived usefulness and intention to 

use, all favoring the group that used instructional videos 

compared to those that employed generative artificial 

intelligence. These findings suggest that videos are more 

effective in fostering curiosity, as previously discussed, and 

generate a higher perception of usefulness and a stronger 

intention to use the tool in the future. 
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First, perceived usefulness, defined as the extent to which 

students consider a tool to enhance their learning, was 

significantly higher in the video group. This aligns with the 

Technology Acceptance Model (TAM) [39], which posits that 

perceived usefulness is a key predictor of adopting educational 

tools. Videos provide structured and sequential explanations of 

programming concepts, allowing students to visualize how the 

content relates to their learning objectives and reinforcing their 

perception of usefulness [47]. 

 

On the other hand, while offering immediate feedback, Microsoft 

Copilot may generate uncertainty among students by requiring 

them to formulate precise questions and critically evaluate the 

generated responses. This process, which demands advanced 

metacognitive skills, could dilute their perception of usefulness, 

especially in the early stages of learning [38]. 

In the second place, intention to use, which reflects students' 

willingness to continue using a tool in the future, also showed 

significant differences in favor of videos. This result aligns with 

technology acceptance and usage studies that highlight the 

importance of ease of use and perceived usefulness in adopting 

technologies [28,41]. Being more intuitive and less demanding 

regarding metacognitive skills, videos may generate a more 

satisfying learning experience, increasing the intention to use 

them [28]. In contrast, interaction with Microsoft Copilot, while 

innovative and novel, may be perceived as more complex and 

less accessible for students at early programming levels, 

potentially reducing their intention to use it [42]. 

 

In response to research question RQ3: Are there differences in 

effects between students who practice using Microsoft Copilot 

and those using instructional videos regarding technology 

acceptance dimensions: ease of use, perceived usefulness, and 

intention to use? , there are significant differences in perceived 

usefulness and intention to use, both favoring the group that used 

videos. These results suggest that videos, by offering a more 

structured and accessible learning experience, generate a higher 

perception of usefulness and a stronger intention to use them in 

the future. In contrast, despite providing immediate feedback, 
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Microsoft Copilot may not be perceived as equally useful or easy 

to use in early learning stages, limiting its adoption. 

 

These findings underscore the importance of designing 

educational tools that balance innovation and accessibility, 

adapting to students' needs and experience levels. By addressing 

these factors, educators and developers can create solutions that 

maximize engagement and learning outcomes, ensuring that 

technological advancements are enablers rather than barriers to 

effective education. 

 

6. Conclusions 
 

This study evaluated the impact of using a generative artificial 

intelligence (Microsoft Copilot) compared to video-based 

instruction on university students' learning of web programming 

in PHP. Through a pretest-intervention-posttest experimental 

design, the effects on learning and affective perceptions of 71 

participants were analyzed. Participants were randomly divided 

into two groups: one that used Microsoft Copilot and another 

that followed instructional videos. The Hedonic-Motivation 

System Adoption Model (HMSAM) was employed to assess 

perceptions. 

 

The results revealed that students who received instruction 

through videos made greater progress in the post-test knowledge 

assessment than those who used Microsoft Copilot.  This finding 

suggests that the sequential and multimodal structuring of 

information in videos, specifically designed to teach complex 

programming concepts and algorithms, facilitates the 

assimilation of concepts by reducing extraneous cognitive load. 

In contrast, Microsoft Copilot, as a general-purpose GenAI tool, 

lacks the tailored pedagogical focus of the videos, which may 

explain its relatively lower effectiveness for novice learners in 

this context. 

 

These conclusions highlight the potential of instructional videos 

as a powerful tool for introductory programming education, 

particularly in contexts where clarity, structure, and reduced 

cognitive load are critical for student success, such as with 
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industrial engineering students who may lack extensive 

programming experience. At the same time, they suggest that 

while generative AI tools like Microsoft Copilot offer innovative 

possibilities, their adoption may require careful scaffolding and 

integration, especially for novice learners. Notably, although the 

participants (third-year industrial engineering students) had prior 

programming experience from courses in Java and databases, 

their foundations might not have been sufficient to fully leverage 

Microsoft Copilot in this context. Learning PHP, a new language 

for them, alongside the autonomous use of Microsoft Copilot 

without specific training, likely demanded advanced 

metacognitive skills (e.g., crafting effective prompts and 

critically evaluating AI responses) that were not yet fully 

developed. This suggests that Microsoft Copilot could be more 

beneficial for students in advanced stages or with a computer 

science background, where a stronger, language-specific 

conceptual foundation and familiarity with AI interaction enable 

them to maximize their potential for real-time problem-solving. 

Future research should explore hybrid approaches that combine 

the strengths of both methods to optimize learning outcomes 

across different stages of programming education and learner 

profiles. 

 

This study's main contribution provides empirical evidence on 

the differential impact of generative AI tools and traditional 

instructional methods on programming learning. These findings 

highlight the need to consider cognitive demands and students' 

affective perceptions when designing technology-based 

pedagogical strategies. Additionally, this study contributes 

relevant knowledge to the Latin American context, where 

research on the adoption of educational technologies is still 

scarce, and factors such as digital literacy and resource 

availability may influence the effectiveness of technological 

tools. While our results are rooted in the context of industrial 

engineering students learning PHP, they may hold broader 

implications. Due to their structured guidance and reduced 

cognitive load, the preference for instructional videos could 

generalize to other introductory programming courses (e.g., 

Python, JavaScript) or even non-programming domains (e.g., 

mathematics or engineering design) where novices benefit from 
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clear, sequential instruction. Similarly, the potential of 

generative AI tools like Microsoft Copilot for advanced learners 

might extend to contexts requiring adaptive feedback. However, 

this would depend on learners’ prior knowledge, the complexity 

of the subject matter, and the specific instructional design. 

However, such generalizations require caution, as differences in 

course objectives, disciplinary conventions, and student 

backgrounds could alter the observed effects. 

 

Nevertheless, this research has some limitations. First, the 

sample was limited to students from a single university in Chile, 

which restricts the generalization of the findings to other 

educational and cultural contexts. Second, the intervention was a 

single-session activity conducted over seven days, with no 

follow-up assessments beyond the immediate post-test. This 

short duration means that the study primarily captures immediate 

learning outcomes rather than long-term retention or the ability 

to apply PHP skills in diverse contexts, potentially limiting the 

external validity of the results. The lack of follow-up 

assessments prevents us from determining whether the observed 

advantages of instructional videos or the potential of Microsoft 

Copilot persist over time. This is particularly relevant for 

programming education, where sustained practice is key to 

mastery. However, the study focused on comparing the 

immediate effectiveness of the two methods in a controlled 

setting, and the pre- and post-test design provides a valid 

measure of short-term learning gains within this scope. Finally, 

the study focused exclusively on learning PHP, so it would be 

relevant to examine whether the results are replicated in other 

programming languages and levels of complexity or entirely 

different study domains. 

 

Another significant limitation is the lack of control over potential 

confounding variables, such as digital literacy, prior 

programming experience beyond the course modules, or gender, 

due to the absence of stratification or balance verification in the 

random assignment. Although the pre-test confirmed the 

equivalence in PHP knowledge between the groups, these 

unmeasured variables could have influenced the interaction with 

Microsoft Copilot, particularly considering that digital literacy 
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may affect the ability to formulate prompts and validate AI 

responses. This limitation reflects the scope of the study, which 

prioritized evaluating the effects on learning and affective 

perceptions rather than technology adoption factors, which are 

often the primary focus in technology acceptance studies. Future 

research should include specific instruments to measure these 

variables and consider them as covariates or stratification criteria 

to enhance the robustness of the experimental design. 

 

Future studies should address these limitations by expanding the 

sample to include diverse educational settings, extending the 

duration of interventions to evaluate long-term effects, and 

exploring the applicability of the findings across various 

programming languages (e.g., Python, C++) and non-

programming disciplines (e.g., physics, statistics). Such efforts 

will help determine the extent to which the comparative 

advantages of instructional videos and generative AI tools can be 

generalized, providing a more comprehensive understanding of 

their role in technology-enhanced education across diverse 

contexts. 

 

Future studies should address these limitations by expanding the 

sample to include diverse educational settings, extending the 

duration of interventions to evaluate long-term effects, and 

exploring the applicability of the findings across different 

programming languages and learner profiles. Such efforts will 

contribute to a more comprehensive understanding of how 

emerging technologies can be effectively integrated into 

programming education while addressing the unique needs of 

students in various contexts. 

 

From a practical perspective, these findings provide valuable 

insights for curriculum designers and computer science 

educators. The results suggest that video-based instruction is an 

effective strategy for introductory programming teaching. At the 

same time, generative AI tools like Microsoft Copilot may be 

more useful in advanced stages when students already have solid 

conceptual foundations and require immediate feedback for 

problem-solving. At the technological level, these findings can 

guide the development of hybrid platforms that combine the 
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pedagogical structure of videos with the adaptability of 

generative AI to optimize the learning experience. 

 

As future lines of research, longitudinal studies to evaluate the 

long-term effects of these tools on learning are recommended. 

Such studies could include follow-up assessments at multiple 

intervals (e.g., one month, three months) to examine retention 

and skill application, addressing the limitation of the current 

short-term focus. Additionally, it would be valuable to explore 

combined strategies that integrate video-based instruction with 

generative AI, analyzing their effectiveness across different 

experience levels and learning profiles. Finally, expanding the 

sample to include diverse institutions and countries will help 

validate the generalization of these findings in varied educational 

contexts, strengthening the understanding of the impact of 

technology on education in Latin America. However, it is 

important to note that these conclusions are based on short-term 

post-intervention assessments. Future research should include 

delayed post-tests or follow-up studies to evaluate long-term 

retention and the sustainability of these instructional effects. 
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