
Top 10 Contributions in Applied Sciences

1 www.academicreads.com

Book Chapter

Can Generative Artificial Intelligence

Outperform Self-Instructional Learning

in Computer Programming?: Impact on

Motivation and Knowledge Acquisition

Rafael Mellado1* and Claudio Cubillos2

1Escuela de Comercio, Pontificia Universidad Católica de

Valparaíso, Valparaíso 2340025, Chile
2Escuela de Ingeniería Informática, Pontificia Universidad

Católica de Valparaíso, Valparaíso 2340025, Chile

*Corresponding Author: Rafael Mellado, Escuela de

Comercio, Pontificia Universidad Católica de Valparaíso,

Valparaíso 2340025, Chile

Published October 30, 2025

This Book Chapter is a republication of an article published by

Rafael Mellado and Claudio Cubillos at Applied Sciences in

May 2025. (Mellado, R.; Cubillos, C. Can Generative Artificial

Intelligence Outperform Self-Instructional Learning in Computer

Programming?: Impact on Motivation and Knowledge

Acquisition. Appl. Sci. 2025, 15, 5867.

https://doi.org/10.3390/app15115867)

How to cite this book chapter: Rafael Mellado, Claudio

Cubillos. Can Generative Artificial Intelligence Outperform

Self-Instructional Learning in Computer Programming?: Impact

on Motivation and Knowledge Acquisition. Top 10

Contributions in Applied Sciences. Hyderabad, India: Academic

Reads. 2025.

© The Author(s) 2025. This article is distributed under the terms

of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits

Top 10 Contributions in Applied Sciences

2 www.academicreads.com

unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Author Contributions: Conceptualization, R.M. and C.C.;

methodology, R.M. and C.C..; soft-ware, R.M.; validation, R.M.,

and C.C.; formal analysis, C.C.; investigation, R.M. and C.C.;

resources, R.M. and C.C.; data curation, C.C.; writing— original

draft preparation, R.M.; writing—review and editing, C.C.;

visualization, R.M. and C.C.; supervision, C.C.. All authors have

read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was

conducted in accordance with the Declaration of Helsinki, and

the protocol was approved by the Bioethics and Biosecurity

Committee of Pontificia Universidad Católica de Valparaíso

(protocol code BIOEPUCV-H 659-2023 on 29 June 2023).

Informed Consent Statement: Informed consent was obtained

from all subjects involved in the study.

Data Availability Statement: Data are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abstract

Generative artificial intelligence tools, such as Microsoft

Copilot, are transforming the teaching of programming by

providing real-time feedback and personalized assistance;

however, their impact on learning, motivation, and cognitive

absorption remains underexplored, particularly in university

settings. This study evaluates the effectiveness of Microsoft

Copilot compared to instructional videos in teaching web

programming in PHP, implementing a quasi-experimental design

with 71 industrial engineering students in Chile, divided into two

groups: one using Microsoft Copilot and the other following

instructional videos, with pre-and post-tests applied to measure

knowledge acquisition while surveys based on the Hedonic-

Motivation System Adoption Model (HMSAM) assessed

Top 10 Contributions in Applied Sciences

3 www.academicreads.com

cognitive absorption (enjoyment, control, immersion, curiosity)

and technology acceptance (perceived usefulness, ease of use,

and intention to adopt). The results show that, while both

methods improved learning, students who used instructional

videos achieved greater knowledge gains, higher levels of

curiosity, and a stronger intention to continue using the

technique, suggesting that instructional videos, by providing

structured explanations and reducing cognitive load, may be

more effective in the early stages of programming learning. In

contrast, AI tools could be more beneficial in advanced stages

where students require adaptive feedback, providing empirical

evidence on the comparative effectiveness of AI-based and

video-based instruction in teaching programming and

highlighting the importance of balancing structured learning with

AI-driven interactivity, with the recommendation that educators

integrate both approaches to optimize the learning experience,

using videos for initial instruction and AI tools for personalized

support.

Keywords

Generative Artificial Intelligence; Programming education;

Cognitive absorption; Technology adoption.

1. Introduction
1.1 Background

In recent years, generative artificial intelligence (AI) tools, such

as Microsoft Copilot, Google Gemini, and ChatGPT, have begun

to significantly transform the educational landscape [1]. These

technologies assist in solving complex problems and promote a

more personalized and adaptive learning experience [2]. Tools

like Microsoft Copilot have proven particularly useful in

programming by offering real-time code suggestions, facilitating

understanding concepts, and resolving errors [3]. However, their

impact on student learning and motivation has yet to be

sufficiently explored, especially within university educational

contexts.

Top 10 Contributions in Applied Sciences

4 www.academicreads.com

One of the main challenges in adopting technological systems in

education is measuring the motivation and enjoyment that users

experience when interacting with these tools. The theory of

cognitive absorption suggests that immersion and enjoyment

during technology use can significantly influence adoption and

effective learning [4]. However, measuring these emotional and

cognitive dimensions remains challenging, requiring validated

instruments and rigorous methodological approaches [5]. In the

case of generative AI tools, it is crucial to understand how they

impact the learning experience and whether they generate

positive emotional effects that enhance knowledge retention.

Learning to program web systems, particularly in languages like

PHP, represents a significant challenge for university students

[6-8]. The complexity of the concepts, the need for logical skills,

and the steep learning curve contribute to the difficulty [9].

Universities face the challenge of designing effective

pedagogical strategies that enable students to overcome these

barriers. Traditionally, instructional videos have been a common

tool for teaching programming, but their effectiveness compared

to more interactive methods, such as generative AI, has not yet

been sufficiently studied [10].

In Latin America, research on the impact of AI tools in education

is still in its early stages [11,12]. Students in this region exhibit

levels of digital literacy that differ from those in Europe, Asia,

and the United States, which may influence the adoption and

effectiveness of these technologies [13]. Additionally, there is a

significant gap in the scientific literature addressing these

differences and exploring how AI tools can be adapted to

specific educational contexts. This study aims to contribute to

closing this gap by evaluating the impact of Microsoft Copilot on

the learning and motivation of university students in the Latin

American context.

1.2 Theoretical Framework

Learning programming, especially in languages like PHP for

web development, presents significant challenges for university

students. Among the most common difficulties are the

Top 10 Contributions in Applied Sciences

5 www.academicreads.com

comprehension of abstract concepts, the resolution of syntactic

and logical errors, and the lack of motivation to persist in the

face of complex problems [9]. These barriers affect academic

performance and can generate frustration and disinterest among

students, hindering their learning process [14]. In response to

this scenario, educational institutions have sought to implement

innovative pedagogical strategies that allow these limitations to

be overcome and promote more effective and motivating

learning.

In recent years, active learning techniques have gained relevance

in education, particularly in technical fields such as

programming [15]. Instructional videos have been widely used to

facilitate the understanding of complex concepts, as they allow

students to learn at their own pace and review the content as

many times as necessary [10]. However, these resources are

often unidirectional and do not always promote active interaction

between the student and the learning material.

On the other hand, generative artificial intelligence tools, such as

Microsoft Copilot, represent an evolution in active learning

strategies. These tools provide immediate feedback and adapt

their assistance based on the individual needs of the student [3].

Generative AI fosters a more interactive and personalized

approach by offering real-time code suggestions and

contextualized explanations, enhancing comprehension and

student motivation.

The Hedonic-Motivation System Adoption Model (HMSAM)

provides a useful theoretical framework for understanding how

generative AI tools like Microsoft Copilot can influence

technology adoption and effective use in educational contexts.

This model focuses on hedonic motivation, the pleasure or

enjoyment users experience when interacting with a technology,

as a key factor in its adoption [16]. According to HMSAM,

cognitive absorption, which includes dimensions such as

enjoyment, immersion, and curiosity, plays a crucial role in

perceiving a technology's usefulness and ease of use.

Top 10 Contributions in Applied Sciences

6 www.academicreads.com

The HMSAM is based on three main constructs: perceived

enjoyment, perceived control, and immersion. Perceived

enjoyment refers to the extent to which the use of a system is

perceived as pleasurable and fun, serving as a critical predictor

in hedonic contexts [17]. Perceived control reflects the sense of

autonomy and mastery that the user experiences when interacting

with the system, which increases their confidence and

willingness to adopt the technology [18]. Finally, immersion

describes a psychological state in which the user feels fully

absorbed by the technological experience, a key factor in

systems such as virtual reality and video games [19].

In the context of programming education, each construct of the

HMSAM plays a distinct role [20,21]. For example, 'perceived

usefulness' and 'ease of use' help assess how well students

perceive these tools as effective in supporting coding tasks,

especially important in introductory programming, where clear

scaffolding is essential. Enjoyment and curiosity are crucial for

maintaining engagement during error-prone debugging or logic

design activities. 'Focused immersion' and 'temporal dissociation'

are frequently reported by students when deeply engaged in

solving complex programming challenges. 'Control' reflects the

learner’s perceived autonomy when navigating through AI-

suggested solutions, and 'behavioral intention to use' is critical

for understanding whether students would continue using AI

tools beyond the classroom setting. These constructs were,

therefore, selected not only for their theoretical grounding in

HMSAM but also for their practical alignment with the

motivational, emotional, and cognitive demands inherent to

programming education [20].

In line with this, Chakraborty [22] noted that GenAI fosters

human-machine collaboration, enabling personalized and

adaptive learning while supporting experiential approaches

within the HMSAM framework. The study highlights the

integration of GenAI in curriculum design, teaching, and

assessment, and its potential to equip students with key

competencies for the future workforce. These constructs

influence the intention to use and the effective adoption of

hedonic systems. For example, in video games, perceived

Top 10 Contributions in Applied Sciences

7 www.academicreads.com

enjoyment and immersion are significant predictors of the

intention for continued use [23]. In social media applications,

perceived control and immersion explain the adoption of new

functionalities [24].

In the context of programming education, HMSAM suggests that

tools that generate a pleasurable and motivating user experience

are more likely to be adopted and used effectively. For instance,

if students find using Microsoft Copilot enjoyable and

immersive, allowing them to become absorbed in the coding

process, they are more likely to perceive the tool as useful and

easy to use, which in turn may increase their intention for

continued use [16]. This theoretical approach is particularly

relevant to the present study, as it allows for the evaluation of the

cognitive impact of generative AI tools on learning and their

ability to foster states of immersion, enjoyment, and motivation.

By considering both the utilitarian and hedonic aspects of the

experience, HMSAM offers a comprehensive perspective for

understanding how the adoption and continued use of

technologies like Microsoft Copilot can positively influence

academic performance and students' willingness to engage

actively and sustainably with programming.

Furthermore, the theory of cognitive absorption can be enriched

by considering knowledge dynamics and knowledge fields—

rational, emotional, and spiritual—as proposed by [25-27] in the

context of learning. These approaches suggest that constructs

such as enjoyment, curiosity, and immersion depend on the

transformation of knowledge across domains: for instance, the

rational understanding of PHP programming structures may

evolve into an emotional state of satisfaction or curiosity when

solving practical problems or even a spiritual connection when

perceiving a broader purpose in technological learning. Within

the scope of this study, such transformations may occur during

active interaction with Microsoft Copilot, which encourages

autonomous exploration, as well as through instructional videos,

which provide structured guidance, thereby enhancing the

adoption and effectiveness of both tools under the HMSAM

framework.

Top 10 Contributions in Applied Sciences

8 www.academicreads.com

1.3 Objectives and Research Questions

The present study aims to evaluate the capacity of a generative

AI (Microsoft Copilot) compared to an instructional video to

generate learning and positive emotional effects when university

students practice web programming topics in PHP.

The research questions to be considered in this study are:

RQ1: What differences in learning exist between students who

practice web programming using Microsoft Copilot versus an

instructional video?

RQ2: What differences exist between students who practice web

programming using Microsoft Copilot and those using an

instructional video regarding cognitive absorption effects:

enjoyment, control, focused immersion, temporal dissociation,

and curiosity?

RQ3: What differences in effects exist between students who

practice using Microsoft Copilot and those using an instructional

video in the dimensions of technology acceptance: ease of use,

perceived usefulness, and intention to use?

2. Related Works
2.1 Educational Models, Motivation, and Technology

Acceptance

The flipped classroom model is a widely researched approach in

current education, which has garnered interest for its potential to

foster active student participation. Bishop et al. [28] conducted a

study that categorized various research on this model based on

in-class and out-of-class activities, assessment systems, and

methodological strategies. Although a positive perception was

observed among students, the results revealed a lack of robust

empirical evidence supporting significant improvements in

academic performance. In a complementary study, Sung et al.

[29] demonstrated that including mobile devices can enhance

learning outcomes when combined with interactive teaching

methods. However, Bernard [30] provided a different

perspective by showing that, in certain contexts, asynchronous

interaction in distance education environments can be even more

effective than face-to-face interaction.

Top 10 Contributions in Applied Sciences

9 www.academicreads.com

Digital technologies, beyond their use in the flipped classroom,

have also been analyzed in the field of education. Gordillo [31],

for example, compared the effects of game-based learning with

the use of videos in software engineering courses, concluding

that games designed by instructors generate better content

retention outcomes. In line with this, Lowry et al. [16]

highlighted "cognitive absorption" as a key factor that fosters

motivation in hedonic educational systems. However, similar to

the case of flipped methodologies, Bernard et al. [30]

emphasized the heterogeneity of these findings, noting that not

all technologies or strategies exhibit the same level of

effectiveness.

Motivation in learning is another area of study that has received

special attention. From the self-determination theory perspective,

Deci and Ryan [32] emphasized the importance of intrinsic and

extrinsic motivation in academic performance and student well-

being. This theoretical framework aligns with the findings of

Jena et al. [33], who revealed substantial improvements in self-

regulation and academic performance when using Web 2.0 tools

for collaborative learning. For instance, a collaborative platform

facilitated continuous interaction in a language course,

demonstrating increased student participation and motivation.

Similarly, Huang and Mizumoto [34] showed that ChatGPT use

in EFL classrooms enhanced students’ intrinsic motivation and

writing self-efficacy when structured guidance was provided,

reinforcing the motivational benefits of GAI in educational

settings.

Although Jena et al. [33] attribute success primarily to social

interaction, Litman [35] argues that individual curiosity

(conceptualized as a driver of personal inquiry) emerges as the

true catalyst in knowledge acquisition. Krouska et al. [36] found

that generative AI tools like ChatGPT enhance student

motivation by promoting enjoyment, effort, outcome evaluation,

perceived relevance, and interaction. These effects stem from the

chatbot’s conversational and social features, which foster quality

engagement and positively influence academic performance.

These differences underscore the need to delve deeper into the

contextual factors that may modulate motivation. Similarly,

Top 10 Contributions in Applied Sciences

10 www.academicreads.com

Dousay [37] examined how the design of multimedia resources

impacts student motivation, highlighting the importance of

having reliable measurement tools. Meanwhile, Lowry et al. [16]

proposed the Hedonic-Motivation System Adoption Model

(HMSAM), in which cognitive absorption (understood as total

immersion in an activity) directly influences the intention to use

playful educational systems. Even so, Abdelshiheed et al. [38]

emphasized that metacognition and motivation in intelligent

tutoring systems are also essential for preparing for future

learning.

In the field of technology acceptance, Davis [39] was a pioneer

in describing how perceived usefulness and ease of use influence

the adoption of digital systems. Ghimire & Edwards [40]

emphasized that generative AI adoption in educational settings is

closely tied to perceived usefulness and ease of use, core

constructs of the Technology Acceptance Model (TAM).

Educators are more likely to adopt GenAI when it enhances

teaching effectiveness and is user-friendly, underlining the need

for supportive integration strategies. Later, Venkatesh et al. [41]

integrated multiple theories to formulate the Unified Theory of

Acceptance and Use of Technology (UTAUT), which has

demonstrated robustness in identifying key factors in adopting

technological tools. Both Davis and Venkatesh agree that the

perception of ease of use plays a determining role in technology

acceptance, a finding also supported by Steinert et al. [42], who

used advanced language models to provide formative feedback

and foster self-regulated learning. Lin & Ng [43] explored user

motivations and concerns regarding generative AI on platforms

like Reddit, identifying utilitarian, hedonic, and social

gratifications, along with creativity enhancement and

technical/social problems. These factors affect engagement and

highlight the need for user-centered, ethically grounded AI

systems that address technological capabilities and societal

implications to foster broader acceptance.

In contrast, Clark and Mayer [44] posited that instructional

design has a greater impact than the technological platform used,

emphasizing that technology alone does not guarantee positive

outcomes. While not denying the relevance of technology

Top 10 Contributions in Applied Sciences

11 www.academicreads.com

acceptance, this argument highlights the need to align the

adoption of new tools with carefully designed pedagogical

strategies. Al-Abdullatif [45] highlighted that AI literacy and

perceived ease of use are key to GenAI acceptance among

university instructors, mediated by smart TPACK and perceived

trust. The study emphasizes the need for educators to strengthen

their foundational knowledge and pedagogical adaptability to

integrate GenAI technologies effectively into their teaching

practices. On the other hand, cognitive load theory (with an

emphasis on managing students' cognitive resources) has guided

multiple instructional design proposals. Paas and Van

Merriënboer [46] established that excessive cognitive load can

negatively impact learning, particularly in complex tasks

requiring high processing levels. Similarly, Mayer [47]

formulated principles based on the cognitive theory of

multimedia learning, emphasizing the need to use visual and

textual elements complementarily to avoid overloading working

memory.

In another study, Martins [48] demonstrated that including

interactive annotations in educational videos can enhance student

comprehension by focusing attention and reducing extraneous

cognitive load. However, the effects of such interventions are not

always uniform, as Bernard et al. [30] observed significant

variations depending on the type of interaction promoted,

highlighting that the implementation of asynchronous or

synchronous strategies can lead to divergent outcomes.

Meanwhile, Abdelshiheed et al. [38] suggest that even in the

presence of well-designed multimedia, metacognition acts as a

critical factor in learning transfer, which is why cognitive load

should not only be mitigated but also strategically managed.

Despite the advances above, gaps in the literature remain. On the

one hand, some studies, such as those by Bishop & Verleger [28]

and et al. [29], have primarily focused on student perceptions or

short-term outcomes without providing longitudinal follow-up of

the effects on academic performance. Similarly, Bernard et al.

[30] highlight the heterogeneity in the effect size of interactive

strategies, suggesting the need to examine in greater detail the

role of context, discipline, and student characteristics.

Top 10 Contributions in Applied Sciences

12 www.academicreads.com

On the other hand, deeper explorations are needed regarding how

motivation, in its various dimensions (intrinsic, extrinsic, social,

and curiosity-based), is modulated by factors such as

institutional culture, educational level, or the nature of the

subject matter. Likewise, while models such as those proposed

by Davis [39] and Venkatesh et al. [41] have provided robust

theoretical frameworks, Clark & Mayer [44] emphasize the need

to validate these models across diverse environments with

heterogeneous characteristics empirically. Finally, it is noted that

metacognition and self-regulation require more specific

approaches, particularly when integrating complex technologies

such as intelligent tutoring systems.

Thus, the reviewed literature reveals a convergence around the

relevance of motivation, instructional design, and technology

acceptance as pillars of technology-mediated learning. However,

divergences persist regarding the efficacy of strategies and

digital tools and methodological challenges that prevent a

definitive consensus. It is necessary to conduct studies with

longer timeframes and greater experimental rigor to clarify the

conditions under which innovative educational models and

emerging technologies generate positive and sustainable impacts

on learning. Only then will it be possible to develop more

comprehensive, adaptable, and effective approaches within the

growing educational ecosystem.

Top 10 Contributions in Applied Sciences

13 www.academicreads.com

2.2 Computer Programming

Traditional methods of teaching programming, such as lectures

and paper-based exercises, have been widely used in higher

education [9,14,34,49]. However, these approaches are often

criticized for their lack of interactivity and adaptability to the

individual needs of students [49,50].

Yang et al. [51] proposed PSFinder, a tool capable of identifying

coding screencasts in online videos to improve automation in

software engineering. This work shares with Codemotion [52]

the use of machine learning algorithms, particularly computer

vision, for video processing. However, while PSFinder focuses

on classifying videos to facilitate automated debugging and

library recommendations, Codemotion emphasizes interactivity

with programming content. As a limitation, PSFinder

experiences difficulties classifying videos with large moving

objects, whereas Codemotion does not evaluate its effectiveness

across various video formats.

Using videos as an educational resource in teaching

programming has been extensively studied. Tutorly [53]

proposes interactive tutoring based on language models to

enhance the learning experience for students. The tool integrates

as a JupyterLab extension and guides learners through

multimodal conversations that adapt to each individual’s

progress. One of its main contributions is the video transcript

segmentation system, which achieves 73.7% accuracy within

five-second margins. However, it faces challenges with lengthy

videos, suggesting the need to divide content into shorter clips to

optimize accuracy.

In parallel, Codewit.us [54] is a tool that combines videos with

interactive coding exercises to reinforce learning. This platform

was implemented in introductory programming courses at

institutions such as the University of California, Santa Barbara,

where the performance of 156 students was evaluated. The

results indicate that those who used Codewit.us, integrating

videos and practical exercises, showed significantly higher

Top 10 Contributions in Applied Sciences

14 www.academicreads.com

interaction frequency than those who accessed these resources

separately.

While both studies highlight the importance of incorporating

multiple teaching modalities, their focus differs: Tutorly uses

language models for personalized tutoring, whereas Codewit.us

synchronizes videos and exercises to encourage continuous

practice. Together, these works suggest the need to evaluate such

systems in different educational contexts and consider their

integration into various platforms as future research directions.

W. Liu et al. [53] explored the impact of blended learning

supported by live streaming for programming students,

comparing the experiences of full-time students with those who

also work. Their study, conducted at a university in Taiwan with

54 participants, revealed that working students preferred code

annotations to review material at their own pace. In contrast,

full-time students benefited more from flipped classrooms and

video-based resources. This approach is comparable to solutions

based on video-supported programming labs, as analyzed by

McGowan et al. [55]. These researchers noted that interactive

video-based learning environments enhance the understanding

and retention of programming concepts, especially when they

include practical tasks and guided exercises. However, both

studies agree on the need to explore the scalability of these

strategies further across diverse institutions and heterogeneous

student populations.

Regarding pedagogical innovations, gamification represents

another avenue of research to improve programming education.

Mellado and Cubillos [56] demonstrated that using reward

techniques contributes to better performance in teaching data

structures. Their proposal aligns with the findings of Ferreira et

al. [57], who emphasize the importance of feedback and

continuous assessment in the programming learning process.

While Mellado & Cubillos [56] focus on motivation through

playful incentives, Ferreira et al. [57] highlight traditional

pedagogical strategies to reinforce learning. Both perspectives

recognize the value of active learning, leaving open the

possibility of combining gamification with structured feedback

in future research.

Top 10 Contributions in Applied Sciences

15 www.academicreads.com

Regarding the challenges of learning programming, Kadar et al.

[58] examined the difficulties faced by students without prior

computing education. Their conclusions complement those of

Esche and Weihe [59], who analyzed how various pedagogical

foundations impact the teaching of programming. While Kadar

et al. [58] identified structural issues in how programming is

taught, Esche & Weihe [59] focused on the effect of video-based

pedagogy on students' self-efficacy. Nevertheless, both studies

agree on the need to broaden the generalization of their results to

different educational levels and student profiles.

The reviewed studies show that programming education has

evolved by incorporating advanced technologies, from artificial

intelligence to gamification strategies and hybrid teaching

models. However, common challenges persist, such as the lack

of longitudinal research to assess long-term impacts and the

adaptation of methodologies to diverse student profiles. Future

research could focus on integrating these approaches and

analyzing potential synergies between AI-based tutoring,

gamification, and blended learning to enhance the effectiveness

of programming education. Additionally, it is necessary to

validate these approaches in varied educational contexts and with

heterogeneous populations to consolidate their applicability and

scalability.

2.3 Artificial Intelligence in Education

The evolution and application of generative artificial intelligence

in programming have generated growing interest in academic

literature [60]. Various studies have examined the impact of this

technology on education, code improvement, content generation,

and software development [61-64]. Recent generative AI

advancements have significantly improved code quality across

various programming contexts. For instance, Nettur et al. [65]

found that GPT-4o, when guided by a chained few-shot

prompting approach, outperformed other methods in generating

Cypress automation code, excelling in completeness, syntactic

accuracy, and maintainability. These findings suggest that the

quality of AI-generated code is advancing rapidly, offering

Top 10 Contributions in Applied Sciences

16 www.academicreads.com

robust support for programming tasks when paired with effective

prompting strategies.

Furthermore, generative AI tools have increasingly demonstrated

their capacity to streamline programming tasks, particularly in

web development. Mahadevappa et al. [66] highlight that such

tools can automate the generation of content, design, and web

code, significantly reducing the time and expertise required for

development. Similarly, Ho et al. [67] emphasize that generative

AI can improve student satisfaction and technology acceptance

in programming courses by enabling the creation of user

interface materials through simple text-based prompts. Their

study, focused on App Inventor environments, shows that GAI

saves instructors time in material preparation and enhances the

quality and efficiency of instruction, ultimately benefiting

student motivation and learning outcomes. This capability

underscores the potential of AI to support both professional and

educational contexts, particularly for languages like PHP used in

web programming. In the context of this study, these

advancements suggest that tools like Microsoft Copilot could

enhance learning efficiency, provided students are equipped to

harness their automation features effectively. Additionally,

Jayachandran [68] notes that generative AI has been integrated

into competitive programming events for university students,

lowering participation barriers and boosting interest in

programming, further illustrating its educational potential. This

aligns with the present study’s exploration of Microsoft Copilot,

highlighting the importance of considering how prompt design

and tool capabilities influence outcomes in academic settings.

Regarding the use of generative artificial intelligence in

computer programming education, several studies have analyzed

its effect on the training of future programmers. For example,

Keuning et al. [69] investigated students' perceptions of AI tools

in programming courses, finding that the acceptance and use of

such tools vary depending on the structure of each course and

students' prior familiarity with the technology. Similarly, Yilmaz

and Karaoglan Yilmaz [70] reported that incorporating ChatGPT

into programming instruction enhances self-efficacy and student

motivation, suggesting that GenAI facilitates the learning

Top 10 Contributions in Applied Sciences

17 www.academicreads.com

process and promotes greater academic engagement. However,

Wilson and Nishimoto [71] cautioned that using these tools may

complicate the assessment of student effort and actual

comprehension, prompting the development of new, more

appropriate evaluative methods.

In parallel, Shanshan and Sen [72] investigated the usefulness of

AI-generated content in program debugging. Their results

suggest that advanced integration of AI into programming tools

increases performance and computational thinking; however, not

all levels of integration show statistically significant benefits,

indicating the need for further studies to understand the scope of

such integration.

When discussing automation and code improvement in software

development, Sajja et al. [73] evaluated the impact of GenAI on

code quality and maintenance, highlighting its potential to

automate repetitive tasks and enhance the productivity of

development teams. Yehia [74] also described generative AI as a

transformative technology capable of generating novel content

across multiple domains. However, Liu and Li [75] emphasized

the challenges associated with collaborative programming

between humans and AI, underscoring coordination issues and

the importance of considering ethical aspects when integrating

these tools into educational and professional environments.

On the other hand, Boguslawski et al. [76] examined how

language models influence the motivation of programming

students. According to their findings, these models can foster

autonomy and competence but do not replace the social support

necessary for robust and meaningful learning. This latter aspect

is particularly relevant, suggesting that the motivation to

program with AI may involve additional dimensions beyond

mere technological availability.

The study by [77] explores the impact of generative AI on

teaching programming in higher education, comparing its

effectiveness with video-based learning. Through an experiment

involving 40 computer engineering students, learning outcomes,

intrinsic motivation, and perceptions of the learning environment

Top 10 Contributions in Applied Sciences

18 www.academicreads.com

were assessed. The results indicate no significant differences in

learning outcomes between the methods; however, generative AI

improved perceptions of autonomy and reduced effort and

pressure, while videos increased perceptions of competence.

These findings suggest that both methods motivate students

differently and complement each other to enhance programming

instruction in university settings.

Despite the proliferation of research on GenAI in the

programming field, contradictions and limitations that require

attention persist. For example, Groothuijsen et al. [78] found that

using AI chatbots in engineering education negatively influenced

pair programming and collaboration among students, contrasting

with studies reporting student engagement improvements [79].

Similarly, Frankford et al [80]. noted that while AI tutors in

automated assessment systems provide timely feedback, they

may also hinder autonomous learning by offering generic

responses.

Regarding methodological limitations, Li et al. [81] indicated

that their research on adaptive learning and GenAI lacks robust

empirical evidence, limiting its applicability in real teaching

environments. Similarly, Maphoto et al. [82] examined the

incorporation of GenAI in distance education. Still, their

conclusions are confined to a specific context, making it difficult

to generalize their findings to other settings.

Although various studies analyze the acceptance and application

of AI in programming, the motivation for programming with AI

remains a relatively unexplored topic. While research such as

that by Boguslawski et al. [76] and Yilmaz & Karaoglan Yilmaz

[70] has approached motivation in programming education, there

is still a need to investigate the factors that drive programmers to

adopt AI as a development tool. Understanding these

motivational drivers is essential for designing more intuitive and

effective AI systems. Additionally, the relationship between self-

efficacy and reliance on AI in programming requires more

detailed analysis to determine when AI acts as a learning

enhancer and when it may generate dependency or limit skill

development.

Top 10 Contributions in Applied Sciences

19 www.academicreads.com

Overall, recent literature agrees on the positive impact of

generative AI on programming education and software

development, although discrepancies persist in collaborative

aspects and the assessment of learning outcomes. The main

limitations stem from some studies' lack of generalization and

robust empirical evidence. Finally, motivation for programming

with AI emerges as a relevant gap in research, exploring which

would contribute to the design of strategies and tools that

promote more effective and responsible adoption of GenAI in

programming. Ko et al. [83] emphasized that while GenAI tools

can enhance learning experiences, they raise concerns regarding

bias, dependency, and ethical dilemmas. The proposed

framework encourages responsible use by guiding stakeholders

to ensure GenAI contributes positively to student outcomes

while addressing environmental and moral challenges in

educational contexts.

3. Experimental Design

For the present study, a quasi-experimental design was chosen,

following a quantitative research methodology based on the

approach used by Mellado et al. [56]. A pretest-intervention-

posttest scheme was implemented, where learning outcomes and

affective variables were measured during the pre- and post-test

stages, per the HMSAM model. Microsoft Copilot (Microsoft

Copilot) was selected as the generative AI tool due to its free

availability to students through their university-provided Office

365 accounts, ensuring accessibility, and its robust capabilities

for real-time code generation and feedback, which align with the

objectives of teaching PHP programming. While other AI tools,

such as ChatGPT or Google Gemini (also accessible via

university accounts), could offer user-friendly interfaces or

education-specific features, Microsoft Copilot was preferred due

to students’ prior familiarity with it from previous course

activities, making it a practical choice for this context.

3.1 Participants

This study involved third-year students from an industrial

engineering program at a university in Chile as participants. 71

Top 10 Contributions in Applied Sciences

20 www.academicreads.com

students (53 men and 18 women), aged between 19 and 21,

participated in the intervention. The activity was conducted

during the first semester of 2024. Participants were randomly

assigned to two groups: 35 students (23 men and 12 women)

used Microsoft Copilot, and 36 (27 men and 9 women) utilized

instructional videos as their study medium. The randomization

was performed using the random group assignment feature in the

Moodle platform, which automatically allocates participants into

groups randomly.

To ensure the integrity of the random assignment, the Moodle

group assignment function was configured to conceal group

composition from the participants, thereby guaranteeing that

students could not ascertain the assignment of their peers. Each

student had access solely to the information about their group

(Microsoft Copilot or instructional videos) via the platform, with

no possibility of viewing the resources allocated to others. The

assignment was executed automatically through the Moodle

randomization feature before the commencement of the

intervention, without manual intervention, which minimized the

risk of bias in the allocation process. However, owing to the

study design and logistical constraints, stratification strategies

were not implemented, nor was the balance in additional baseline

variables, such as gender, prior programming experience beyond

the course modules, or digital literacy, verified. The pre-test

focused exclusively on assessing knowledge of PHP, as this

constituted the focus of the learning module, and all students

possessed a similar exposure to the preceding Java and database

modules, thereby minimizing initial variability within the context

of this study. This process was completed before the

intervention, ensuring each student had an equal probability of

being assigned to either group. It was managed through Moodle,

which facilitates access to the respective resources. Participation

was voluntary; thus, this description excludes students who

began but did not complete the activity.

We relied on the pre-test to assess initial PHP knowledge to

control for potential pre-existing differences, as detailed in

Section 4.1. An ANOVA applied to the pre-test scores confirmed

no significant differences between the groups (F(1,69) = 0.451, p

Top 10 Contributions in Applied Sciences

21 www.academicreads.com

= 0.50), indicating that the randomization effectively balanced

prior knowledge. Additional variables such as age, gender, or

previous academic performance were not analyzed in this study

due to its scope and resource limitations. However, the random

assignment via Moodle, combined with the pre-test equivalence,

supports the comparability of the groups at baseline for this

quasi-experimental design.

3.2 Curriculum

The activity was conducted as part of a software systems course,

which includes a module on data structures in Java (8 weeks),

another on databases (4 weeks), and a final module on web

design with HTML and PHP (4 weeks). While the prior modules

provided a foundation in programming logic and database

management, the PHP module introduced a new language and

web-specific concepts, representing a shift that required students

to adapt their existing knowledge. The course consists of 3

weekly lecture sessions and 2 weekly laboratory workshop

sessions. The learning objectives (LOs) considered in the activity

correspond to the web module and were as follows:

LO1: The student analyzes basic PHP elements such as blocks,

variables, loops, and decision-making in algorithmic solutions to

simple problems.

LO2: The student correctly handles arrays, superglobal variables,

and their concatenation with strings in algorithmic solutions.

LO3: The student correctly uses the `mysqli_` functions to

interact with databases.

3.3 Process

Figure 1 illustrates the overall process used, which consists of

four stages: (1) explanation of objectives and modality, (2)

diagnostic assessment, (3) intervention with the exercise, and (4)

final evaluation. In the first stage, during the lecture session, the

objectives, modality, and deadlines for the exercise activity were

explained. Later in the same week, during the two workshop

sessions, stage 2 was carried out, which involved the application

of diagnostic instruments to establish a baseline for comparison,

both for initial knowledge and for affective perceptions about the

Top 10 Contributions in Applied Sciences

22 www.academicreads.com

upcoming activity (under the HMSAM model). During the same

workshop sessions, stage 3 began, which consisted of the actual

exercise, dividing participants into two groups: Microsoft

Copilot and an instructional video. Figure 3 provides an example

of an exercise from the PHP practice guide used specifically

during stage 3 by the Microsoft Copilot group, highlighting the

integration of follow-up questions to guide interaction with the

AI tool.

The group division and activity sequence were managed through

the Moodle platform assigned to the course. Participants were

given 7 days to complete the exercise guide and the final

questionnaires (stage 4), which included a final knowledge test

and a perception questionnaire (HMSAM).

Although no explicit or formal training was provided

immediately before the intervention, students assigned to the

Microsoft Copilot group were assumed to be familiar with

generative AI tools, including Microsoft Copilot specifically.

This familiarity stemmed from their prior experiences within the

course, where they had previously engaged informally with

generative AI tools such as Microsoft Copilot, ChatGPT, and

Google Gemini via their institutional Office 365 accounts.

Consequently, only brief general instructions were given,

allowing participants to interact freely with Microsoft Copilot

during the exercises without additional detailed guidance or

standardization protocols.

Top 10 Contributions in Applied Sciences

23 www.academicreads.com

Figure 1: Experimental process used.

Specific diagnostic instruments (pre- and post-tests) were used to

evaluate learning, such as the example presented in Figure 2,

which was drawn from a repository of questions and selected

randomly. The example in Figure 2, extracted from the

repository of questions used in the pretest and posttest, focuses

Top 10 Contributions in Applied Sciences

24 www.academicreads.com

on identifying and correcting errors in a PHP code that interacts

with a MySQL database. The objective of the code is to process

name and surname variables sent through a form, insert them

into a table called "personas," and then display the results in an

HTML table. However, the code contains several errors that

must be corrected to function properly. These errors include

incorrect use of SQL syntax in the INSERT statement, lack of

data validation, and potential security issues such as SQL

injection. The PHP instructions must also be reviewed to ensure

the data is handled and displayed correctly in the browser. This

exercise allowed for evaluating both the students' technical

knowledge and their ability to apply programming concepts in

practical contexts.

Figure 2: Example of the type of question used in pre and post-test.

Both groups used the same PHP practice guide, including a

series of exercises with code snippets. Each exercise presents 3

Top 10 Contributions in Applied Sciences

25 www.academicreads.com

to 4 non-exclusive alternatives containing statements about

possible outcomes or consequences of the given code, specific

lines of code, or potential replacements for certain lines of code.

It is important to emphasize that this exercise guide is a

compilation of various exercises used in previous semesters and

captures the most frequent errors made by students who, despite

having learned the material, begin coding in PHP.

Figure 3 presents an exercise from the PHP practice guide used

in stage 3 by the Microsoft Copilot group, where a PHP block

surrounds HTML code. Specifically, line 5 with $objetos = 2; is

outside the PHP block, meaning it will not be preprocessed and

will be displayed as plain text. The figure has been enlarged to

enhance the legibility of the code and accompanying text.

To the Copilot software, in “precise” mode, add the following

code prompts and questions:

<html>

<head>

 <title>Cálculos generales</title>

</head>

<body>

 $objetos = 2;

 <?php

 $peso = 10;

 echo "Peso total";

 echo $objetos * $peso;

 echo "
";

 ?>

</body>

</html>

Analysis Question:

1.1 The AI responded by assuming that the variable $objects is

inside the PHP block. Is this correct? If not, correct the answer.

Alternatives proposed to the student:

a. The user will see, among other texts, the value 20.

b. The user will see, among other texts, the value 10 and the text

.

Top 10 Contributions in Applied Sciences

26 www.academicreads.com

c. The user will see, among other texts, the string $objects=2;

d. The line containing $objects=2; will generate an error and will

not be displayed.

Figure 3: Exercise 1 of the guide used.

Likewise, Figure 4 presents a PHP code snippet that utilizes the

$POST superglobal variable to construct a database query in the

$sql variable by concatenating strings with variables.

Additionally, it uses Mysqli_ functions.

For the following PHP code, return the correct alternatives with

their justification:

<?php

$nombre = $_POST["nombre"];

$apellido = $_POST["apellido"];

$sql = "INSERT INTO personas (nombre, apellido) VALUES

('$nombre', '$apellido')";

$conexion = mysqli_connect("localhost", "usuario",

"contraseña", "basededatos");

$resultado = mysqli_query($conexion, $sql);

if ($resultado) {

 echo "Registro insertado correctamente.";

} else {

 echo "Error al insertar: " . mysqli_error($conexion);

}

mysqli_close($conexion);

?>

Analysis Question:

The AI generated a statement that directly concatenates the

values of the variables $firstName and $lastName within the

SQL statement.

Is this procedure correct? What observations would you make

about this snippet?

Proposed alternatives (according to the original guide):

Top 10 Contributions in Applied Sciences

27 www.academicreads.com

a. The code is well-written and should not generate errors.

b. Using double quotes with variables within the INSERT

statement can cause interpretation errors.

c. The $sql variable should be declared within a function to

avoid conflicts.

d. Using $_POST can allow the user to manipulate the query if

there is no prior validation.

Figure 4: Exercise 5 of the guide used.

The control group used a video (see Figure 5) specifically

created to review each exercise in the guide. The video explained

why the different alternatives presented were either correct or

incorrect.

Figure 5: Explanatory video of the exercises is in the guide.

The experimental group used the same exercises but with the

instruction to query Microsoft Copilot. Additionally, the

exercises for this group included follow-up questions to guide

students in evaluating the correctness of the AI’s responses. For

instance, in Exercise 1 (see Figure 3), a follow-up question 1.1

asks whether the AI considered the variable $objetos outside a

PHP block. If not, the students were instructed to correct the AI.

Top 10 Contributions in Applied Sciences

28 www.academicreads.com

To scaffold students’ critical engagement with Microsoft

Copilot, the exercise guide used in this group included follow-up

questions accompanying specific tasks (see Figure 3). Given the

context of each exercise, these questions prompted students to

evaluate whether the AI's suggestions were syntactically and

logically appropriate. For instance, one prompt asked: 'Did the

assistant consider that the variable $objetos is outside the PHP

block?' Students were encouraged to reformulate their queries or

adjust the proposed code when discrepancies were detected.

These prompts aimed to foster metacognitive awareness, reduce

overreliance on AI suggestions, and support the iterative

refinement of solutions.

3.4 Instruments

For the initial and final knowledge tests, exercises similar to

those in the guide were used, following the format of code

snippets with four non-exclusive alternatives. The pre-test and

post-test included six exercises (two associated with each

Learning Objective, LO), randomly selected from a pool of 18

exercises (distinct from the guide), with scores ranging from 0.0

to 10.0. These exercises were developed from materials used in

prior semesters of the software systems course and aligned with

the PHP module’s learning objectives. Content validity was

ensured through review by two instructors with over five years

of PHP teaching experience. The pre- and post-test exercises

were extracted from a broader item bank applied in the Software

Systems course for over four academic years (seven semesters),

primarily as practice and assessment tools aligned with the

course’s PHP module learning objectives. These items were

developed by instructors with extensive experience in

programming instruction and have undergone iterative

refinement based on student performance and instructional

feedback. While detailed item analysis was not conducted, the

sustained application of these items across cohorts supports their

empirical reliability and content validity. Post-hoc analysis of the

post-test scores showed a Cronbach’s alpha of 0.82, indicating

good reliability. Figure 6 shows an example of a question used in

the pre-test.

Top 10 Contributions in Applied Sciences

29 www.academicreads.com

It is important to note that both experimental conditions—

Microsoft Copilot and instructional video—worked with the

same practice guide and were assessed using pre- and post-tests

drawn from a shared item bank. This uniformity ensures that

familiarity with item formats or content is applied equally across

both groups, minimizing the risk of biased learning gains due to

prior exposure.

Figure 6: Sample question in knowledge pretest.

On the other hand, for the initial and final perception tests, the

HMSAM model was used with its eight dimensions: usefulness,

enjoyment, ease of use, intention to use, control, focused

immersion, temporal dissociation, and curiosity [16]. The total

number of statements for both tests was 24 items, measured on a

Likert scale from 1 to 7, where 1 corresponded to "Strongly

Disagree," 4 to "Neutral," and 7 to "Strongly Agree".

Top 10 Contributions in Applied Sciences

30 www.academicreads.com

Table 1: List with questions (statements) by construct of the HMSAM model

(for pretest).

Construct Question

Control (Ctrl) • I will have little control over what I can do (Rev).

• I expect to have control while performing the

activities.

• I expect to be able to freely choose what I want to

see or do while performing the activities.

Curiosity (Cur) • This experience will stimulate my curiosity.

• This experience will spark my imagination.

• This experience will make me curious.

Temporal

Dissociation

(TD)

• Time will seem to pass very quickly while doing the

activity.

• I will lose track of time while doing the activities.

• Time will "fly" when I do the exercises.

Ease of use • I believe navigating, writing questions, and reading

answers will be easy.

• I find that the activity with the ICT resource will be

easy to use.

• I believe that interacting with the ICT resource

during the activity will be clear and understandable.

Focalized

Immersion (FI)
• I will be focused and able to block out most

distractions.

• I will be absorbed/engaged in what I will be doing.

• I will be immersed in the activity.

Enjoyment • I will enjoy performing the activity.

• I think it will be a fun activity.

• The experience of the activity will be pleasant.

Behavioral

Intention of Use

(BIU)

• I believe I would plan to use it in the future to

review.

• I expect to continue using it in the future.

• I believe I will intend to keep using this ICT resource

during the semester.

Utility • I expect that this activity will improve my

knowledge of PHP.

• I expect that this activity will help me with PHP

programming.

• I find that performing the activity will be useful.

4. Results

The statistical software SPSS 29 was used to analyze the results.

Analysis of variance (ANOVA) and analysis of covariance

(ANCOVA) tests were considered to measure the differences in

Top 10 Contributions in Applied Sciences

31 www.academicreads.com

initial and final learning outcomes. To measure the size of the

effects found, partial eta squared (η²) was used, with values of

0.01 indicating a small effect, 0.06 a medium effect, and 0.14 or

greater a large effect [84].

4.1 Learning Effects

Table 1 presents the descriptive statistics for the knowledge tests

administered at the beginning and end of the intervention,

separated by experimental condition (video vs. Microsoft

Copilot).

For assessing normality on pretest scores a Shapiro-Wilk test

was performed for the Copilot (W = 0.97, p = 0.36) and the

Video (W = 0.98, p = 0.54) groups, showing non significant

differences from normality. On postest scores, Shapiro-Wilk test

provided (W = 0.95, p = 0.13) for the Copilot and (W = 0.95, p =

0.11) for the Video conditions, indicative for normality. A

Levene's test showed homogeneity of variances between

conditions for pretest (F = 0.38, p = 0.54)and postest (F = 3.18, p

= 0.08) scores.

Table 2: Descriptive statistics of pretest and posttest per condition.

Group N Pretest Postest

Mean Standard

deviation

Mean Standard

deviation

Microsoft

Copilot

35 4.46 2.42 5.69 2.32

Video 36 4.85 2.52 8.17 1.23

Total 71 4.66 2.46 6.94 2.22

When an ANCOVA test was applied to the post-test scores,

using the pre-test as a covariate, to measure possible differences

between groups, significant differences were found between the

two groups. The group that used videos showed a higher post-

test score than the group that used Microsoft Copilot, with

F(1,68) = 32.621, p < 0.001, η² = 0.32 (see Figure 7).

Additionally, an analysis of variance (ANOVA) test was applied

to the pre-test scores by the group to verify whether there were

differences between the groups, yielding F(1,69) = 0.451, p =

Top 10 Contributions in Applied Sciences

32 www.academicreads.com

0.50, and no significant differences were detected in the prior

knowledge levels of the subjects in both groups. Similarly, an

ANOVA was applied to the post-test scores by group, resulting

in F(1,69) = 31.920, p < 0.001, η² = 0.32, indicating that the

video group had a significantly higher post-test score than the

Microsoft Copilot group.

Figure 7: Estimated marginal means for posttest among conditions (video vs

MSCopilot).

4.2 HMSAM Effects

Table 3 details the descriptive statistics for the pre-and post-

intervention measures of the eight dimensions of the HMSAM

model, broken down by condition. The constructs considered

were usefulness, enjoyment, ease of use, intention to use,

control, focused immersion, temporal dissociation, and curiosity.

A Cronbach's alpha of 0.94 for the pre-IMI and 0.93 for the post-

IMI perception tests was obtained.

On post perception values, homogeneity of variances between

groups was assessed by the Levene's test for each of the eight

constructs: Utility (F = 2.69, p = 0.11), Enjoyment (F = 2.84, p =

0.70), Ease of Use (F = 0.71, p = 0.40), BIU (F = 1.60, p = 0.21),

Top 10 Contributions in Applied Sciences

33 www.academicreads.com

Control (F = 0.96, p = 0.33), FI (F = 0.82, p = 0.37), TD (F =

2.25, p = 0.14), and Curiosity (F = 0.02, p = 0.90).

On pre-post perception values, the Levene's test showed equality

of variances on Utility (F = 1.84, p = 0.18), Enjoyment (F = 0.24,

p = 0.63), Ease of Use (F = 1.34, p = 0.25), BIU (F = 0.10, p =

0.75), Control (F = 0.74, p = 0.39), FI (F = 1.54, p = 0.22), TD

(F = 3.57, p = 0.06), and Curiosity (F = 0.14, p = 0.71).

Table 3: Descriptive statistics of HMSAM pretest and posttest perceptions per

condition.

Construct Condition Pretest Postest

Mean Standard

deviation

Mean Standard

deviation

Utility Copilot 5.78 0.99 5.48 1.14

Video 5.72 0.94 5.92 0.87

Total 5.75 0.96 5.70 1.03

Enjoyment (Joy) Copilot 4.76 1.24 4.70 1.25

Video 5.19 1.25 5.26 1.22

Total 4.98 1.25 4.98 1.26

Ease of Use Copilot 5.47 0.96 5.58 1.19

Video 5.68 0.95 5.90 1.05

Total 5.58 0.96 5.74 1.12

Behavioral

Intention of Use

(BIU)

Copilot 5.54 1.16 5.41 1.25

Video 5.64 1.00 5.93 1.03

Total 5.59 1.08 5.67 1.16

Control (Ctrl) Copilot 5.24 0.93 5.11 1.05

Video 5.46 0.89 5.43 1.16

Total 5.35 0.91 5.27 1.11

Focalized

Immersion (FI)

Copilot 5.13 1.02 5.12 1.04

Video 5.41 1.13 5.54 1.22

Total 5.28 1.08 5.33 1.15

Temporal

Dissociation (TD)

Copilot 4.41 1.27 4.60 1.39

Video 5.01 1.32 5.00 1.52

Total 4.72 1.32 4.80 1.46

Curiosity (Cur) Copilot 4.83 1.33 4.69 1.34

Video 5.17 1.33 5.35 1.26

Total 5.00 1.34 5.03 1.33

A two-way ANOVA was conducted considering the post-

intervention measures, with the condition (video / Microsoft

Copilot) and the HMSAM dimensions as factors on the scores

obtained. The result was F(1,69) = 3.820, p < 0.055, η² = 0.05,

indicating a marginally significant interaction. After performing

Top 10 Contributions in Applied Sciences

34 www.academicreads.com

pairwise comparisons with Bonferroni adjustment, it was found

that only the construct of curiosity showed a significant

difference in favor of the video condition, with F(1,69) = 4.630,

p < 0.035, η² = 0.06.

This was followed by the dimensions of usefulness (F(1,69) =

3.301, p < 0.074, η² = 0.05), enjoyment (F(1,69) = 3.716, p <

0.058, η² = 0.05), and intention to use (F(1,69) = 3.536, p <

0.064, η² = 0.05), all showing differences in favor of the video

condition, though not reaching conventional levels of

significance. The remaining dimensions also showed differences

favoring the video condition but were not statistically significant,

as shown in Figure 8.

Figure 8: Post-perception scores of HMSAM constructs per condition.

An ANOVA was also conducted with the condition and

HMSAM dimensions as factors, but this time on the score

differences (post-test – pretest), yielding F(1,69) = 2.912, p <

0.092, η² = 0.04. Pairwise comparisons with Bonferroni

adjustment revealed significant differences for the dimensions of

usefulness (F(1,69) = 5.135, p < 0.027, η² = 0.07), intention to

use (F(1,69) = 5.867, p < 0.018, η² = 0.08), and curiosity

(F(1,69) = 4.437, p < 0.039, η² = 0.06), all favoring the video

condition over the Microsoft Copilot condition (see Figure 9). It

is important to note that, although eight separate ANOVA tests

were conducted across the HMSAM constructs, no correction for

family-wise error rate (FWER), such as Bonferroni or False

Discovery Rate (FDR), was applied. This constitutes a limitation

of the current analysis. However, the observed effects were

Top 10 Contributions in Applied Sciences

35 www.academicreads.com

consistent in direction and supported by medium effect sizes in

key dimensions (e.g., η² = 0.06 for curiosity, η² = 0.08 for

intention to use), suggesting that the findings are not solely due

to random variation. Future studies should implement

appropriate p-value correction techniques to ensure more

conservative statistical inference and control for inflated Type I

error risk when testing multiple constructs.

Figure 9: Pre-post perception differences of HMSAM constructs per condition.

5. Discussion
5.1 Learning Effects

The findings confirm that, although both methods promote

improvements in student performance, those who followed the

video-based instruction route achieved significantly greater

progress. Several factors can explain this phenomenon.

From the cognitive load theory perspective [46,85], learning

complex content (such as web programming logic) benefits from

resources that optimize the distribution of mental load. In video-

based instruction, students can process information visually and

audibly simultaneously, facilitating the formation of integrated

mental models [44,47]. This advantage is amplified by the fact

that the instructional videos used in this study were specifically

designed to teach PHP programming, with structured

explanations and examples tailored to address common

Top 10 Contributions in Applied Sciences

36 www.academicreads.com

challenges in understanding complex concepts and algorithms. In

contrast, while Microsoft Copilot provides immediate and

adaptive feedback [86,87], it is a general-purpose GenAI tool not

explicitly optimized for pedagogical purposes, requiring students

to formulate questions and validate responses independently.

Additionally, the ability to pause and rewind allows learners to

control the pace of learning and focus on the most complex

elements [28,48], further enhancing the effectiveness of these

purposefully crafted audiovisual resources. This adaptive control

over the learning pace may help reduce extraneous cognitive

load, allowing students to understand better the code’s logic and

structures [46].

Although Microsoft Copilot provides immediate and adaptive

feedback [86,87], students must formulate questions and validate

the relevance of the generated responses. This process requires a

higher level of metacognition and digital competencies to

evaluate the quality of the feedback [38,42]. In contrast, videos

present carefully sequenced examples and explanations, reducing

uncertainty about appropriate practices. In this way, students

perceive constant reinforcement that increases their perceived

competence [39] and motivates them to continue exploring

without fear of initial failure [33].

The inclusion of follow-up questions in the Copilot group

(Figure 3) sought to support this evaluative process. These

prompts encouraged learners to analyze the AI’s output and

identify potential inaccuracies critically. However, the impact of

these questions likely varied depending on the student’s level of

engagement. Some participants may have used them effectively

to guide iterative improvement, while others may have skipped

them or answered superficially, leading to inconsistent benefits

across the group.

In addition to these cognitive factors, it is important to consider

that the quality and structure of the instructional content may

have differed significantly between groups. The video provided a

consistent, pedagogically sequenced explanation for each

exercise, ensuring uniform content delivery across all

participants. In contrast, the AI group relied on individually

Top 10 Contributions in Applied Sciences

37 www.academicreads.com

formulated prompts, resulting in variability in the responses'

relevance, depth, and accuracy from Microsoft Copilot. This

inconsistent content delivery may have contributed to the

observed differences in learning outcomes. Future studies should

control instructional structure across conditions to ensure more

comparable and reliable evaluations of effectiveness.

While Levene’s test indicated homogeneity of variances between

groups, the observed differences in post-test standard deviations

(2.32 vs. 1.23) may suggest potential variance heterogeneity.

However, given the substantial difference in post-test means, the

coefficient of variation (CV) offers a more appropriate metric of

relative dispersion, revealing that variability was not

disproportionate when adjusted for group means. Moreover,

ANCOVA is generally robust to moderate violations of the

homogeneity of variances assumption, particularly in balanced

designs [88,89]. Nonetheless, we acknowledge this as a potential

limitation. As a future line of research, simulation studies [90]

could be implemented to evaluate how deviations from normality

or homoscedasticity might influence the robustness of ANCOVA

results in educational contexts involving generative AI.

The Hedonic-Motivation System Adoption Model (HMSAM)

establishes that the sense of enjoyment and perceived usefulness

are key determinants in the adoption and effectiveness of

learning systems [16]. On the other hand, audiovisual resources

(with narrative, practical examples, and demonstrations) tend to

generate greater affective and cognitive engagement by

stimulating attention, curiosity, and interest [44,91]. In line with

this, previous studies have shown that video-based learning can

foster deeper emotional involvement, facilitating concept

retention [29,31]. In contrast, interaction with generative

artificial intelligence may be less engaging and require self-

regulation strategies that not all students have developed,

especially at the early stages of programming [30].

From an instructional perspective, Microsoft Copilot promotes a

more active learning approach regarding exploration and

constantly testing hypotheses within the code [82,92,93].

However, this constructivist approach may generate uncertainty

Top 10 Contributions in Applied Sciences

38 www.academicreads.com

when students lack a robust foundation in programming syntax

and logic. On the other hand, instructional videos adopt an

expository approach, where the teacher’s guidance is explicit,

and students assimilate problem-solving strategies more directly

[28]. This difference becomes particularly noticeable in the early

stages of learning when familiarity with basic concepts is

essential to avoid cognitive overload [47,85].

Thus, despite the clear inclination of the results toward the

effectiveness of videos, the findings do not diminish the value of

generative artificial intelligence as a reinforcement tool or for

advanced tutoring [80,81,94]. In particular, a mixed instructional

strategy that combines the systematic and exemplified

presentation of a video with the personalized feedback of

Microsoft Copilot could maximize learning by providing a solid

initial conceptual framework, followed by guided and immediate

experimentation [29,33]. Future research could explore the

optimal integration of both methods based on student profiles,

such as their level of experience, learning styles, and intrinsic

motivations.

The greater effectiveness of video in improving web

programming learning can be explained by the reduced

extraneous cognitive load, which facilitates sequential

information reception through multiple modes; sustained

attention and motivation derived from audiovisual resources; and

the immediate and accessible support that reduces uncertainty for

novice students. With this, we can answer the research question:

Are there differences in learning between students who practice

web programming using Microsoft Copilot versus instructional

videos? Affirmatively, learning differences favor video-based

instruction over generative artificial intelligence-based practice.

The profile of the participants (third-year industrial engineering

students rather than computer science students) may further

explain the observed learning effects. Unlike computer science

students, who typically have extensive prior exposure to

programming, industrial engineering students in this study had

limited experience, primarily from prior course modules in Java

and databases. This relative novelty of programming,

particularly in PHP, likely heightened the importance of

Top 10 Contributions in Applied Sciences

39 www.academicreads.com

affective factors such as curiosity, enjoyment, and immersion, as

these students relied heavily on structured guidance (e.g., videos)

to build confidence and competence. Consequently, the greater

effectiveness of instructional videos may reflect their ability to

meet the needs of learners with less programming expertise,

suggesting that the comparative advantage of videos over

Microsoft Copilot could vary with students who have stronger

technical foundations.

An additional consideration that may limit the generalizability of

our findings is the exclusive focus on PHP. While PHP was

chosen for its curricular relevance and role in web development,

different programming languages pose distinct syntactic,

semantic, and conceptual challenges. For example, languages

such as Python or JavaScript offer various levels of abstraction

and readability, which could influence how learners interact with

generative AI tools or benefit from structured instructional

materials. Thus, the effectiveness observed in this study may not

directly translate to other programming contexts. Future research

should replicate this design using diverse programming

languages to assess whether the comparative impact of

instructional videos and AI tools remains consistent.

These conclusions open the door to the strategic use of both

modalities, combining their strengths while mitigating their

limitations. Thus, this integrated approach optimizes teaching

and learning processes in web programming, databases, and

Java. This integrated approach holds significant potential for

enhancing educational outcomes and addressing the diverse

needs of learners at different stages of their programming

journey.

Nonetheless, it is important to underscore that the present

findings are based solely on immediate post-intervention

assessments. As such, they reflect short-term knowledge

acquisition rather than long-term learning or retention. Without

longitudinal follow-up data, we cannot determine whether the

observed advantages of instructional videos persist over time.

Nevertheless, it is important to note that the scope and design of

this study were deliberately aligned with short-term, well-

Top 10 Contributions in Applied Sciences

40 www.academicreads.com

defined learning objectives. As established in instructional

design theory and supported by Bloom’s taxonomy, limited

interventions can be appropriate and effective when the targeted

learning outcomes are specific, foundational, and skill-oriented

[95-97]. Therefore, while long-term retention merits future

study, the present design remains methodologically sound for its

intended scope. Future studies should include delayed post-tests

or follow-up assessments to examine the durability and

transferability of these learning outcomes.

Although the pretest confirmed equivalence in baseline PHP

knowledge between groups, it is important to note that this

instrument did not directly assess broader aspects of digital

literacy or prior experience with generative AI tools. While not

measured, these factors could have contributed to the variability

in how students interacted with Microsoft Copilot. For example,

two students with similar programming knowledge may differ

significantly in their ability to formulate prompts, interpret

responses, or detect inaccuracies in AI outputs due to differences

in their digital fluency. This represents a potential source of

uncontrolled variance in the AI group. We recommend that

future research incorporate explicit instruments to assess digital

literacy and prior AI exposure, potentially including them as

covariates or segmentation variables in experimental designs.

While the present study included a structured exercise guide with

follow-up prompts designed to scaffold critical engagement with

Microsoft Copilot, it did not incorporate a system for recording

the number, content, or quality of student interactions with the

tool. This limits the ability to assess the consistency or depth of

engagement across participants, as actual usage behaviors (e.g.,

number of prompts submitted, adherence to correction

instructions, or time on task) were not tracked. Although all

participants in the AI condition received the same guided

activities, designed to foster metacognitive reflection and

verification of Copilot’s responses, there remains a gap between

the intended instructional design and the unobserved execution

of that design. Future studies should integrate interaction logging

or usage analytics to more precisely evaluate the relationship

between engagement patterns and learning outcomes.

Top 10 Contributions in Applied Sciences

41 www.academicreads.com

Additionally, we did not record the number of queries or

interactions each student had with Microsoft Copilot, which

limits our ability to evaluate engagement consistency across

participants. The absence of data on the quantity, quality, or

nature of prompts (e.g., specificity, complexity, or frequency)

precludes a detailed analysis of how student engagement with

Microsoft Copilot influenced learning outcomes. Variability in

prompt formulation and interaction patterns likely contributed to

differences in the tool’s effectiveness, as its performance heavily

depends on the user’s ability to craft effective prompts and

critically assess AI-generated responses. Future studies should

incorporate usage tracking or interaction logs to quantify

engagement levels and explore their correlation with learning

gains, thereby offering deeper insights into the role of AI tool

proficiency in programming education.

Another critical factor potentially influencing the learning

outcomes was the absence of explicit and standardized

instructions for students interacting with Microsoft Copilot.

While previous informal exposure to Microsoft Copilot and other

generative artificial intelligence tools provided students with

practical knowledge and competence in querying and

interpreting AI outputs, individual variability in proficiency and

approaches likely emerged. This variability might have

influenced the consistency and effectiveness of interactions

during the experimental activity. Future studies should explicitly

standardize training sessions and develop structured interaction

protocols for generative AI tools, thus ensuring greater

methodological rigor, usage consistency, and improved results

comparability across experimental conditions.

5.2 HMSAM Effects

5.2.1 Cognitive Absorption

The results of the present study focused on evaluating

differences in the effects of cognitive absorption (enjoyment,

control, focused immersion, temporal dissociation, and curiosity)

between students who used Microsoft Copilot (Microsoft

Copilot) and instructional videos to practice web programming,

revealed that curiosity showed a significant difference in favor of

Top 10 Contributions in Applied Sciences

42 www.academicreads.com

the group that used videos over those who used generative

artificial intelligence under the Microsoft Copilot model. This

finding aligns with prior research highlighting the role of

structured multimedia resources in stimulating intrinsic interest

[35,37,47].

Most likely, curiosity, as the foundation of exploratory learning,

was favored by instructional videos due to their ability to reduce

extraneous cognitive load [85]. By integrating visual and

auditory elements sequentially, videos facilitate the formation of

coherent mental schemas, allowing students to focus on the logic

of the code without informational overload [44]. This structured

instructional design focuses attention and generates a sense of

progressive competence, which is key to sparking curiosity [32].

For example, pausing and reviewing complex segments

empowers students to explore concepts at their own pace,

fostering self-directed curiosity [28].

In contrast, interaction with a generative artificial intelligence

like Microsoft Copilot, while offering immediate feedback, may

introduce beginner uncertainty by requiring the formulation of

precise questions and the critical validation of responses

generated by artificial models—processes that demand

metacognitive skills still under development [38]. This dynamic

could inhibit curiosity by being perceived as an obstacle to

autonomous exploration.

Regarding the other constructs, such as enjoyment, control,

focused immersion, and temporal dissociation, no significant

differences were found between the groups. However, relevant

trends were observed. In terms of enjoyment, videos scored

slightly higher, suggesting that audiovisual storytelling might

generate greater satisfaction by engaging emotional stimuli [91].

In terms of control, both methods showed similar levels,

indicating that the flexibility of videos (pausing, rewinding) and

the interactivity of Microsoft Copilot address different needs for

autonomy. Although not statistically significant, focused

immersion and temporal dissociation reflected that both

approaches require comparable sustained attention, a critical

aspect in programming environments [31].

Top 10 Contributions in Applied Sciences

43 www.academicreads.com

These findings have significant pedagogical implications.

Instructional videos emerge as effective tools for fostering

curiosity in the early stages of learning, where clarity and

structure are prioritized. However, Microsoft Copilot could be

integrated into advanced stages, where students, already familiar

with basic concepts, require personalized feedback for complex

problems [42].

In response to the research question: Are there differences

between students who practice web programming using

Microsoft Copilot and those using instructional videos regarding

cognitive absorption effects: enjoyment, control, focused

immersion, temporal dissociation, and curiosity? We can state

that only curiosity significantly differed in favor of the group

that used videos. This result suggests that videos better foster

intrinsic interest by structuring content clearly and through

multisensory means. In contrast, no significant differences were

found in the other constructs. This indicates that while structured

multimedia resources enhance curiosity, different dimensions of

cognitive absorption may depend on contextual factors or

individual preferences.

Future research should explore hybrid models that combine both

methodologies, adapting to student profiles and experience

levels. It should also assess the long-term impact of curiosity on

the retention of technical skills. Such investigations could

provide deeper insights into optimizing learning strategies in

web programming and related fields, ensuring that instructional

approaches align with cognitive and motivational needs.

5.2.2 Dimensions of Technological Acceptance

The analysis of score differences (post-test – pre-test) revealed

significant differences in perceived usefulness and intention to

use, all favoring the group that used instructional videos

compared to those that employed generative artificial

intelligence. These findings suggest that videos are more

effective in fostering curiosity, as previously discussed, and

generate a higher perception of usefulness and a stronger

intention to use the tool in the future.

Top 10 Contributions in Applied Sciences

44 www.academicreads.com

First, perceived usefulness, defined as the extent to which

students consider a tool to enhance their learning, was

significantly higher in the video group. This aligns with the

Technology Acceptance Model (TAM) [39], which posits that

perceived usefulness is a key predictor of adopting educational

tools. Videos provide structured and sequential explanations of

programming concepts, allowing students to visualize how the

content relates to their learning objectives and reinforcing their

perception of usefulness [47].

On the other hand, while offering immediate feedback, Microsoft

Copilot may generate uncertainty among students by requiring

them to formulate precise questions and critically evaluate the

generated responses. This process, which demands advanced

metacognitive skills, could dilute their perception of usefulness,

especially in the early stages of learning [38].

In the second place, intention to use, which reflects students'

willingness to continue using a tool in the future, also showed

significant differences in favor of videos. This result aligns with

technology acceptance and usage studies that highlight the

importance of ease of use and perceived usefulness in adopting

technologies [28,41]. Being more intuitive and less demanding

regarding metacognitive skills, videos may generate a more

satisfying learning experience, increasing the intention to use

them [28]. In contrast, interaction with Microsoft Copilot, while

innovative and novel, may be perceived as more complex and

less accessible for students at early programming levels,

potentially reducing their intention to use it [42].

In response to research question RQ3: Are there differences in

effects between students who practice using Microsoft Copilot

and those using instructional videos regarding technology

acceptance dimensions: ease of use, perceived usefulness, and

intention to use? , there are significant differences in perceived

usefulness and intention to use, both favoring the group that used

videos. These results suggest that videos, by offering a more

structured and accessible learning experience, generate a higher

perception of usefulness and a stronger intention to use them in

the future. In contrast, despite providing immediate feedback,

Top 10 Contributions in Applied Sciences

45 www.academicreads.com

Microsoft Copilot may not be perceived as equally useful or easy

to use in early learning stages, limiting its adoption.

These findings underscore the importance of designing

educational tools that balance innovation and accessibility,

adapting to students' needs and experience levels. By addressing

these factors, educators and developers can create solutions that

maximize engagement and learning outcomes, ensuring that

technological advancements are enablers rather than barriers to

effective education.

6. Conclusions

This study evaluated the impact of using a generative artificial

intelligence (Microsoft Copilot) compared to video-based

instruction on university students' learning of web programming

in PHP. Through a pretest-intervention-posttest experimental

design, the effects on learning and affective perceptions of 71

participants were analyzed. Participants were randomly divided

into two groups: one that used Microsoft Copilot and another

that followed instructional videos. The Hedonic-Motivation

System Adoption Model (HMSAM) was employed to assess

perceptions.

The results revealed that students who received instruction

through videos made greater progress in the post-test knowledge

assessment than those who used Microsoft Copilot. This finding

suggests that the sequential and multimodal structuring of

information in videos, specifically designed to teach complex

programming concepts and algorithms, facilitates the

assimilation of concepts by reducing extraneous cognitive load.

In contrast, Microsoft Copilot, as a general-purpose GenAI tool,

lacks the tailored pedagogical focus of the videos, which may

explain its relatively lower effectiveness for novice learners in

this context.

These conclusions highlight the potential of instructional videos

as a powerful tool for introductory programming education,

particularly in contexts where clarity, structure, and reduced

cognitive load are critical for student success, such as with

Top 10 Contributions in Applied Sciences

46 www.academicreads.com

industrial engineering students who may lack extensive

programming experience. At the same time, they suggest that

while generative AI tools like Microsoft Copilot offer innovative

possibilities, their adoption may require careful scaffolding and

integration, especially for novice learners. Notably, although the

participants (third-year industrial engineering students) had prior

programming experience from courses in Java and databases,

their foundations might not have been sufficient to fully leverage

Microsoft Copilot in this context. Learning PHP, a new language

for them, alongside the autonomous use of Microsoft Copilot

without specific training, likely demanded advanced

metacognitive skills (e.g., crafting effective prompts and

critically evaluating AI responses) that were not yet fully

developed. This suggests that Microsoft Copilot could be more

beneficial for students in advanced stages or with a computer

science background, where a stronger, language-specific

conceptual foundation and familiarity with AI interaction enable

them to maximize their potential for real-time problem-solving.

Future research should explore hybrid approaches that combine

the strengths of both methods to optimize learning outcomes

across different stages of programming education and learner

profiles.

This study's main contribution provides empirical evidence on

the differential impact of generative AI tools and traditional

instructional methods on programming learning. These findings

highlight the need to consider cognitive demands and students'

affective perceptions when designing technology-based

pedagogical strategies. Additionally, this study contributes

relevant knowledge to the Latin American context, where

research on the adoption of educational technologies is still

scarce, and factors such as digital literacy and resource

availability may influence the effectiveness of technological

tools. While our results are rooted in the context of industrial

engineering students learning PHP, they may hold broader

implications. Due to their structured guidance and reduced

cognitive load, the preference for instructional videos could

generalize to other introductory programming courses (e.g.,

Python, JavaScript) or even non-programming domains (e.g.,

mathematics or engineering design) where novices benefit from

Top 10 Contributions in Applied Sciences

47 www.academicreads.com

clear, sequential instruction. Similarly, the potential of

generative AI tools like Microsoft Copilot for advanced learners

might extend to contexts requiring adaptive feedback. However,

this would depend on learners’ prior knowledge, the complexity

of the subject matter, and the specific instructional design.

However, such generalizations require caution, as differences in

course objectives, disciplinary conventions, and student

backgrounds could alter the observed effects.

Nevertheless, this research has some limitations. First, the

sample was limited to students from a single university in Chile,

which restricts the generalization of the findings to other

educational and cultural contexts. Second, the intervention was a

single-session activity conducted over seven days, with no

follow-up assessments beyond the immediate post-test. This

short duration means that the study primarily captures immediate

learning outcomes rather than long-term retention or the ability

to apply PHP skills in diverse contexts, potentially limiting the

external validity of the results. The lack of follow-up

assessments prevents us from determining whether the observed

advantages of instructional videos or the potential of Microsoft

Copilot persist over time. This is particularly relevant for

programming education, where sustained practice is key to

mastery. However, the study focused on comparing the

immediate effectiveness of the two methods in a controlled

setting, and the pre- and post-test design provides a valid

measure of short-term learning gains within this scope. Finally,

the study focused exclusively on learning PHP, so it would be

relevant to examine whether the results are replicated in other

programming languages and levels of complexity or entirely

different study domains.

Another significant limitation is the lack of control over potential

confounding variables, such as digital literacy, prior

programming experience beyond the course modules, or gender,

due to the absence of stratification or balance verification in the

random assignment. Although the pre-test confirmed the

equivalence in PHP knowledge between the groups, these

unmeasured variables could have influenced the interaction with

Microsoft Copilot, particularly considering that digital literacy

Top 10 Contributions in Applied Sciences

48 www.academicreads.com

may affect the ability to formulate prompts and validate AI

responses. This limitation reflects the scope of the study, which

prioritized evaluating the effects on learning and affective

perceptions rather than technology adoption factors, which are

often the primary focus in technology acceptance studies. Future

research should include specific instruments to measure these

variables and consider them as covariates or stratification criteria

to enhance the robustness of the experimental design.

Future studies should address these limitations by expanding the

sample to include diverse educational settings, extending the

duration of interventions to evaluate long-term effects, and

exploring the applicability of the findings across various

programming languages (e.g., Python, C++) and non-

programming disciplines (e.g., physics, statistics). Such efforts

will help determine the extent to which the comparative

advantages of instructional videos and generative AI tools can be

generalized, providing a more comprehensive understanding of

their role in technology-enhanced education across diverse

contexts.

Future studies should address these limitations by expanding the

sample to include diverse educational settings, extending the

duration of interventions to evaluate long-term effects, and

exploring the applicability of the findings across different

programming languages and learner profiles. Such efforts will

contribute to a more comprehensive understanding of how

emerging technologies can be effectively integrated into

programming education while addressing the unique needs of

students in various contexts.

From a practical perspective, these findings provide valuable

insights for curriculum designers and computer science

educators. The results suggest that video-based instruction is an

effective strategy for introductory programming teaching. At the

same time, generative AI tools like Microsoft Copilot may be

more useful in advanced stages when students already have solid

conceptual foundations and require immediate feedback for

problem-solving. At the technological level, these findings can

guide the development of hybrid platforms that combine the

Top 10 Contributions in Applied Sciences

49 www.academicreads.com

pedagogical structure of videos with the adaptability of

generative AI to optimize the learning experience.

As future lines of research, longitudinal studies to evaluate the

long-term effects of these tools on learning are recommended.

Such studies could include follow-up assessments at multiple

intervals (e.g., one month, three months) to examine retention

and skill application, addressing the limitation of the current

short-term focus. Additionally, it would be valuable to explore

combined strategies that integrate video-based instruction with

generative AI, analyzing their effectiveness across different

experience levels and learning profiles. Finally, expanding the

sample to include diverse institutions and countries will help

validate the generalization of these findings in varied educational

contexts, strengthening the understanding of the impact of

technology on education in Latin America. However, it is

important to note that these conclusions are based on short-term

post-intervention assessments. Future research should include

delayed post-tests or follow-up studies to evaluate long-term

retention and the sustainability of these instructional effects.

References

1. Bahroun Z, Anane C, Ahmed V, Zacca A. Transforming

Education: A Comprehensive Review of Generative

Artificial Intelligence in Educational Settings through

Bibliometric and Content Analysis. Sustainability. 2023; 15:

12983.

2. Luckin R, Holmes W. Intelligence Unleashed: An argument

for AI in Education. London: UCL Knowledge

Lab. 2016; 849–851. Available onine at:

https://www.pearson.com/content/dam/corporate/global/pear

son-dot-com/files/innovation/Intelligence-Unleashed-

Publication.pdf

3. Jackson V, Vasilescu B, Russo D, Ralph P, Izadi M, et al.

The Impact of Generative AI on Creativity in Software

Development: A Research Agenda. ACM Transactions on

Software Engineering and Methodology. 2024.

4. Agarwal R, Karahanna E. Time flies when you’re having

fun: Cognitive absorption and beliefs about information

Top 10 Contributions in Applied Sciences

50 www.academicreads.com

technology usage. MIS Quarterly: Management Information

Systems. 2000; 24: 665–694.

5. Saadé R, Bahli B. The impact of cognitive absorption on

perceived usefulness and perceived ease of use in on-line

learning: an extension of the technology acceptance model.

Information & Management. 2005; 42: 317–327.

6. Ling HC, Chiang H Sen. Learning Performance in Adaptive

Learning Systems: A Case Study of Web Programming

Learning Recommendations. Frontiers in Psychology. 2022;

13: 770637.

7. Liu IF, Hung HC, Liang CT. A study of programming

learning perceptions and effectiveness under a blended

learning model with live streaming: comparisons between

full-time and working students. Interactive Learning

Environments. 2024.

8. Park TH, Wiedenbeck S. Learning web development:

Challenges at an earlier stage of computing education.

ICER’11 - Proceedings of the ACM SIGCSE 2011

International Computing Education Research Workshop.

2011; 125–132.

9. Robins A, Rountree J, Rountree N. Learning and Teaching

Programming: A Review and Discussion. Computer Science

Education. 2023; 21: 137–172.

10. Guo PJ, Kim J, Rubin R. How video production affects

student engagement: An empirical study of MOOC videos.

L@S 2014 - Proceedings of the 1st ACM Conference on

Learning at Scale. 2014; 41–50.

11. De La Torre A, Baldeon-Calisto M. Generative Artificial

Intelligence in Latin American Higher Education: A

Systematic Literature Review. 12th International

Symposium on Digital Forensics and Security, ISDFS. 2024.

12. Guerrero-Quiñonez AJ, Bedoya-Flores MC, Mosquera-

Quiñonez EF, Mesías-Simisterra ÁE, Bautista-Sánchez JV.

Artificial Intelligence and its scope in Latin American higher

education. Ibero-American Journal of Education & Society

Research. 2023; 13: 264–271.

13. Hinostroza JE, Isaacs S, Bougroum M. Information and

Communications Technologies for Improving Learning

Opportunities and Outcomes in Developing Countries.

Top 10 Contributions in Applied Sciences

51 www.academicreads.com

Learning and Education in Developing Countries. 2014; 42–

57.

14. LahtinenEssi, Ala-MutkaKirsti, JärvinenHannu-Matti. A

study of the difficulties of novice programmers. ACM

SIGCSE Bulletin. 2005; 37: 14–18.

15. Gosavi CS, Arora S. Active Learning Strategies for

Engaging Students in Higher Education. Journal of

Engineering Education Transformations. 2022; 36: 2394–

1707.

16. Lowry PB, Gaskin JE, Twyman NW, Hammer B, Roberts

TL, et al. Taking “Fun and Games” Seriously: Proposing the

Hedonic-Motivation System Adoption Model (HMSAM).

Journal of the Association for Information Systems. 2013;

14: 2.

17. Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and Intrinsic

Motivation to Use Computers in the Workplace1. Journal of

Applied Social Psychology. 1992; 22: 1111–1132.

18. Venkatesh V, Thong JYL, Xu X. Consumer acceptance and

use of information technology: Extending the unified theory

of acceptance and use of technology. MIS Quarterly:

Management Information Systems. 2012; 36: 157–178.

19. Jennett C, Cox AL, Cairns P, Dhoparee S, Epps A, et al.

Measuring and defining the experience of immersion in

games. International Journal of Human-Computer Studies.

2008; 66: 641–661.

20. Ma JY, Xie JF, Chen CC. Exploring the Structural

Relationships of Microinteractions in Perception and

Behavior by the Hedonic Motivation System Adoption

Model. International Journal of Human–Computer

Interaction. 2025.

21. Qomarul Huda M, Aeni Hidayah N, Nur Hafizah Hersyaf T,

Sujoko I, Asmawi. Analysis of Continuance Use of Video on

Demand Applications by Using the Hedonic Motivation

System Adoption Model. 2020 8th International Conference

on Cyber and IT Service Management, CITSM 2020. 2020.

22. Chakraborty S. Generative AI in Modern Education Society.

Computers and Society. 2024.

23. Hamari J, Koivisto J. Why do people use gamification

services? International Journal of Information Management.

2025; 35: 419–431.

Top 10 Contributions in Applied Sciences

52 www.academicreads.com

24. Zhang X, Guo X, Lai KH, Guo F, Li C. Understanding

gender differences in m-health adoption: a modified theory

of reasoned action model. Telemedicine Journal and E-

Health : The Official Journal of the American Telemedicine

Association. 2014; 20: 39–46.

25. Bratianu C, Bejinaru R. Knowledge dynamics: a

thermodynamics approach. Kybernetes. 2020; 49: 6–21.

26. Bratianu C, Garcia-Perez A. Knowledge Dynamics and

Expert Knowledge Translation: A Case Study. European

Conference on Knowledge Management. 2023; 24: 140–147.

27. Qadhi S, Qadhi S. Knowledge Dynamics: Educational

Pathways from Theories to Tangible Outcomes. From

Theory of Knowledge Management to Practice. 2023.

28. Bishop JL, Verleger MA. The flipped classroom: A survey

of the research. ASEE Annual Conference and Exposition,

Conference Proceedings. 2013.

29. Sung YT, Chang KE, Liu TC. The effects of integrating

mobile devices with teaching and learning on students’

learning performance: A meta-analysis and research

synthesis. Computers & Education. 2016; 94: 252–275.

30. Bernard RM, Abrami PC, Borokhovski E, Wade CA, Tamim

RM, et al. A Meta-Analysis of Three Types of Interaction

Treatments in Distance Education. 2009; 79: 1243–1289.

31. Gordillo A, Lopez-Fernandez D, Tovar E. Comparing the

Effectiveness of Video-Based Learning and Game-Based

Learning Using Teacher-Authored Video Games for Online

Software Engineering Education. IEEE Transactions on

Education. 2022; 65: 524–532.

32. Deci EL, Ryan RM. Intrinsic Motivation and Self-

Determination in Human Behavior. Intrinsic Motivation and

Self-Determination in Human Behavior. 1985.

33. Jena AK, Bhattacharjee S, Gupta S, Das J, Debnath R.

Exploring the Effects of Web 2.0 Technology on Individual

and Collaborative Learning Performance in Relation to Self-

Regulation of Learners. Journal on School Educational

Technology. 2018; 13: 20–35.

34. Huang J, Mizumoto A. Examining the effect of generative

AI on students’ motivation and writing self-efficacy. Digital

Applied Linguistics. 2024; 1: 102324–102324.

Top 10 Contributions in Applied Sciences

53 www.academicreads.com

35. Litman JA. Curiosity and the pleasures of learning: Wanting

and liking new information. Cognition and Emotion. 2005;

19: 793–814.

36. Krouska A, Mylonas P, Kabassi K, Caro J, Sgouropoulou C,

et al. Higher Education Students’ Task Motivation in the

Generative Artificial Intelligence Context: The Case of

ChatGPT. Information. 2024; 15: 33.

37. Dousay TA. Multimedia Design and Situational Interest: A

Look at Juxtaposition and Measurement. 2014; 69–82.

38. Abdelshiheed M, Maniktala M, Barnes T, Chi M. Assessing

Competency Using Metacognition and Motivation: The Role

of Time-Awareness in Preparation for Future Learning.

2023.

39. Davis FD. Perceived usefulness, perceived ease of use, and

user acceptance of information technology. MIS Quarterly:

Management Information Systems. 1989; 13: 319–339.

40. Ghimire A, Edwards J. Generative AI Adoption in

Classroom in Context of Technology Acceptance Model

(TAM) and the Innovation Diffusion Theory (IDT). 2024.

41. Venkatesh V, Morris MG, Davis GB, Davis FD. User

acceptance of information technology: Toward a unified

view. MIS Quarterly: Management Information Systems.

2003; 27: 425–478.

42. Steinert S, Avila KE, Ruzika S, Kuhn J, Küchemann S.

Harnessing Large Language Models to Enhance Self-

Regulated Learning via Formative Feedback. 2023.

43. Lin Z, Ng YL. Unraveling Gratifications, Concerns, and

Acceptance of Generative Artificial Intelligence.

International Journal of Human–Computer Interaction. 2024.

44. Clark R Colvin, Mayer RE. E-learning and the science of

instruction : proven guidelines for consumers and designers

of multimedia learning. 2016.

45. Al-Abdullatif AM. Modeling Teachers’ Acceptance of

Generative Artificial Intelligence Use in Higher Education:

The Role of AI Literacy, Intelligent TPACK, and Perceived

Trust. Education Sciences. 2024; 14: 1209.

46. Paas FGWC, Van Merriënboer JJG. Instructional control of

cognitive load in the training of complex cognitive tasks.

Educational Psychology Review. 1994; 6: 351–371.

Top 10 Contributions in Applied Sciences

54 www.academicreads.com

47. Mayer RE. Multimedia Learning. Multimedia Learning,

Second Edition. 2009; 1–304.

48. Martins DS, Cunha BCR, Yaguinuma CA, Zaine I, Pimentel

M da GC. Effects of interactive video annotations on

students’ browsing behavior and perceived workload. ACM

SIGAPP Applied Computing Review. 2019; 19: 44–57.

49. Bennedsen J, Caspersen ME. Failure rates in introductory

programming. ACM SIGCSE Bulletin. 2007; 39: 32–36.

50. Suzuki R, Kato J, Yatani K. ClassCode: An Interactive

Teaching and Learning Environment for Programming

Education in Classrooms. 2020.

51. Yang C, Thung F, Lo D. Efficient Search of Live-Coding

Screencasts from Online Videos. Proceedings - 2022 IEEE

International Conference on Software Analysis, Evolution

and Reengineering, SANER. 2022; 73–77.

52. Khandwala K, Guo PJ. Codemotion: Expanding the design

space of learner interactions with computer programming

tutorial videos. Proceedings of the 5th Annual ACM

Conference on Learning at Scale, L at S 2018. 2018.

53. Li W, Pea R, Haber N, Subramonyam H. Tutorly: Turning

Programming Videos Into Apprenticeship Learning

Environments with LLMs. 2024.

54. Buffardi K, Wang R. Integrating Videos with Programming

Practice. Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE. 2022; 1: 241–247.

55. McGowan A, Anderson N, Trombino G, Sage P, Adhikari J,

et al. Learning to code – investigating the adoption of video-

based lab solutions for university-level novice programmers.

ICERI2023 Proceedings. 2023; 1136.

56. Mellado R, Cubillos C. Gamification improves learning:

Experience in a training activity of computer programming

in higher education. Journal of Computer Assisted Learning.

2024; 40: 1959–1973.

57. Ferreira DJ, da Silva HC, Melo TFN, Ambrósio AP.

Investigation of Continuous Assessment of Correctness in

Introductory Programming. Educational Technology &

Society. 2017; 20: 182–194.

58. Kadar R, Mahlan SB, Shamsuddin M, Othman J, Wahab

NA. Analysis of Factors Contributing to the Difficulties in

Learning Computer Programming among Non-Computer

Top 10 Contributions in Applied Sciences

55 www.academicreads.com

Science Students. 2022 12th IEEE Symposium on Computer

Applications and Industrial Electronics, ISCAIE. 2022; 89–

94.

59. Esche S, Weihe K. Choosing a Didactic Basis for an

Instructional Video: What Are the Implications for Novice

Programmers? Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE. 2023;

1: 450–456.

60. Nguyen-Duc A, Cabrero-Daniel B, Przybylek A, Arora C,

Khanna D, et al. Generative Artificial Intelligence for

Software Engineering -- A Research Agenda. 2023.

61. Bilgram V, Laarmann F. Accelerating Innovation With

Generative AI: AI-Augmented Digital Prototyping and

Innovation Methods. IEEE Engineering Management

Review. 2023; 51: 18–25.

62. Calegario F, Burégio V, Erivaldo F, Moraes D, Andrade C,

et al. Exploring the intersection of Generative AI and

Software Development. 2023.

63. Ebert C, Louridas P. Generative AI for Software

Practitioners. IEEE Software. 2023; 40: 30–38.

64. Ulfsnes R, Moe NB, Stray V, Skarpen M. Transforming

Software Development with Generative AI: Empirical

Insights on Collaboration and Workflow. Generative AI for

Effective Software Development. 2024; 219–234.

65. Nettur SB, Karpurapu S, Nettur U, Gajja LS. Cypress

Copilot: Development of an AI Assistant for Boosting

Productivity and Transforming Web Application Testing.

IEEE Access. 2024.

66. Mahadevappa P, Muzammal SM, Tayyab M, Mahadevappa

P, Muzammal SM,. Introduction to Generative AI in Web

Engineering: Concepts and Applications. 2025; 15: 297–330.

67. Ho CL, Liu XY, Qiu YW, Yang SY. Research on Innovative

Applications and Impacts of Using Generative AI for User

Interface Design in Programming Courses. ACM

International Conference Proceeding Series. 2024; 68–72.

68. Jayachandran D, Maldikar P, Love TS, Blum JJ. Leveraging

Generative Artificial Intelligence to Broaden Participation in

Computer Science. Proceedings of the AAAI Symposium

Series. 2024; 3: 486–492.

Top 10 Contributions in Applied Sciences

56 www.academicreads.com

69. Keuning H, Alpizar-Chacon I, Lykourentzou I, Beehler L,

Köppe C, et al. Students’ Perceptions and Use of Generative

AI Tools for Programming Across Different Computing

Courses. 2024.

70. Yilmaz R, Karaoglan Yilmaz FG. The effect of generative

artificial intelligence (AI)-based tool use on students’

computational thinking skills, programming self-efficacy

and motivation. Computers and Education: Artificial

Intelligence. 2023; 4: 100147.

71. Wilson SE, Nishimoto M. Assessing Learning of Computer

Programing Skills in the Age of Generative Artificial

Intelligence. Journal of Biomechanical Engineering. 2024;

146.

72. Shanshan S, Sen G. Empowering learners with AI-generated

content for programming learning and computational

thinking: The lens of extended effective use theory. Journal

of Computer Assisted Learning. 2024; 40: 1941–1958.

73. Sajja A, Thakur D, Mehra A, Sajja A, Thakur D, et al.

Integrating Generative AI into the Software Development

Lifecycle: Impacts on Code Quality and Maintenance.

International Journal of Science and Research Archive.

2024; 13: 1952–1960.

74. Yehia E. Developments on Generative AI. AI and Emerging

Technologies: Automated Decision-Making, Digital

Forensics, and Ethical Considerations. 2024; 139–160.

75. Liu J, Li S. Toward Artificial Intelligence-Human Paired

Programming: A Review of the Educational Applications

and Research on Artificial Intelligence Code-Generation

Tools. 2024.

76. Boguslawski S, Deer R, Dawson MG. Programming

education and learner motivation in the age of generative AI:

student and educator perspectives. Information and Learning

Science, ahead-of-print(ahead-of-print). 2024.

77. Cubillos C, Mellado R, Cabrera-Paniagua D, Urra E.

Generative Artificial Intelligence in Computer

Programming: Does it enhance learning, motivation, and the

learning environment? IEEE Access. 2025.

78. Groothuijsen S, van den Beemt A, Remmers JC, van

Meeuwen LW. AI chatbots in programming education:

Students’ use in a scientific computing course and

Top 10 Contributions in Applied Sciences

57 www.academicreads.com

consequences for learning. Computers and Education:

Artificial Intelligence. 2024; 7: 100290.

79. Pesovski I, Santos R, Henriques R, Trajkovik V. Generative

AI for Customizable Learning Experiences. Sustainability.

2024; 16: 3034.

80. Frankford E, Sauerwein C, Bassner P, Krusche S, Breu R.

AI-Tutoring in Software Engineering Education Experiences

with Large Language Models in Programming Assessments.

Proceedings - International Conference on Software

Engineering. 2024; 309–319.

81. Li H, Xu T, Zhang C, Chen E, Liang J, et al. Bringing

Generative AI to Adaptive Learning in Education. 2024.

82. Maphoto KB, Sevnarayan K, Mohale NE, Suliman Z, Ntsopi

TJ, et al. Advancing Students’ Academic Excellence in

Distance Education: Exploring the Potential of Generative

AI Integration to Improve Academic Writing Skills. Open

Praxis. 2024; 16: 142–159.

83. Ko S, Chan SCH, Ko S, Chan SCH. A Framework for the

Responsible Integration of Generative AI Tools in Learning.

2024; 5: 163–194.

84. Lakens D. Calculating and reporting effect sizes to facilitate

cumulative science: A practical primer for t-tests and

ANOVAs. Frontiers in Psychology. 2013; 4: 62627.

85. Sweller J. Cognitive load during problem solving: Effects on

learning. Cognitive Science. 1988; 12: 257–285.

86. Du X, Liu M, Wang K, Wang H, Liu J, et al. Evaluating

Large Language Models in Class-Level Code Generation.

Proceedings - International Conference on Software

Engineering. 2024; 982–994.

87. Vaithilingam P, Zhang T, Glassman EL. Expectation vs.

Experience: Evaluating the Usability of Code Generation

Tools Powered by Large Language Models. Conference on

Human Factors in Computing Systems - Proceedings. 2022.

Available online at:

https://doi.org/10.1145/3491101.3519665/SUPPL_FILE/349

1101.3519665-TALK-VIDEO.MP4

88. Ch KP, Poremba KD, Rowell RK. Testing for Homogeneity

of Slopes in Analysis of Covariance: A Tutorial. 1997.

89. Rheinheimer DC, Penfield DA. The Effects of Type I Error

Rate and Power of the ANCOVA F-Test and Selected

Top 10 Contributions in Applied Sciences

58 www.academicreads.com

Alternatives under Non-Normality and Variance

Heterogeneity. 1998.

90. Ateş C, Kaymaz Ö, Tekindal MA, Erdoğan BD. Robustness

of analysis of covariance (ancova) under the distributions

assumptions and variance homogeneity. Eurasian Journal of

Veterinary Sciences. 2020; 36: 58–65.

91. Huang YM, Chiu PS. The effectiveness of a meaningful

learning-based evaluation model for context-aware mobile

learning. British Journal of Educational Technology. 2015;

46: 437–447.

92. Hou I, Mettille S, Li Z, Man O, Zastudil C, et al. The Effects

of Generative AI on Computing Students’ Help-Seeking

Preferences. ACM International Conference Proceeding

Series. 2024; 39–48.

93. Kharrufa A, Johnson I. The Potential and Implications of

Generative AI on HCI Education. ACM International

Conference Proceeding Series. 2024.

94. Chen E, Lee JE, Lin J, Koedinger K. GPTutor: Great

Personalized Tutor with Large Language Models for

Personalized Learning Content Generation. L@S 2024 -

Proceedings of the 11th ACM Conference on Learning @

Scale. 2024; 539–541.

95. Bloom BS. Learning for Mastery. Instruction and

Curriculum. Regional Education Laboratory for the

Carolinas and Virginia, Topical Papers and Reprints,

Number 1. Evaluation Comment. 1968; 1.

96. Conklin J. Review of A Taxonomy for Learning, Teaching,

and Assessing: A Revision of Bloom’s Taxonomy of

Educational Objectives Complete Edition. Educational

Horizons. 2005; 83: 154–159.

97. Guskey TR. Closing Achievement Gaps: Revisiting

Benjamin S. Bloom’s “Learning for Mastery.” Journal of

Advanced Academics. 2007; 19: 8–31.

